Skip to main content
Log in

A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool

  • Published:
Scientometrics Aims and scope Submit manuscript

Abstract

Radical novelty is one of the key characteristics of emerging technologies. This characteristics makes emerging technologies as a quite different from established technologies. From the perspective of radical novelty, some studies consider patents with little similarity in terms of key concepts and contents to existing patents as candidate emerging technologies. However, existing research remains in examining small-scale patents for evaluating candidate emerging technologies due to the lack of data-processing capacity—the recent rising of deep learning methods may help in this. This study, therefore, develops a novel deep learning based framework for identifying emerging technologies by combining a technological impact evaluation using patents and a social impact evaluation using website articles. Using a large scale multi-source dataset including 129,694 patents and 35,940 website articles, this paper applies the framework to investigate the case of computerized numerical control machine tool technology, through which the framework is validated. The results show that 16,131 patents out of 129,694 patents are considered as candidate emerging technologies, and 192 patents out of 16,131 patents are identified as emerging technologies through the evaluation of technology impact and social impact. This implies that these candidate emerging technologies can evolve to emerging technologies, though not all of them—we need deep learning method to scrutinize a larger scale multi-source data to identify rather a small number of potential emerging technologies. The proposed framework can also be extended to explore other disciplinary multi-source data for strategic decision support in identifying emerging technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adner, R., & Snow, D. (2010). Old technology responses to new technology threats: Demand heterogeneity and technology retreats. Industrial and Corporate Change, 19(5), 1655–1675.

    Article  Google Scholar 

  • Aharonson, B. S., & Schilling, M. A. (2016). Mapping the technological landscape: Measuring technology distance, technological footprints, and technology evolution. Research Policy, 45(1), 81–96.

    Article  Google Scholar 

  • Albertelli, P. (2017). Energy saving opportunities in direct drive machine tool spindles. Journal of cleaner production, 165, 855–873.

    Article  Google Scholar 

  • Aral, S., Dellarocas, C., & Godes, D. (2013). Social media and business transformation: A framework for research. Information Systems Research, 24(1), 3–13.

    Article  Google Scholar 

  • Aristodemou, L., & Tietze, F. (2018). The state-of-the-art on Intellectual Property Analytics (IPA): A literature review on artificial intelligence, machine learning and deep learning methods for analysing intellectual property (IP) data. World Patent Information, 55, 37–51.

    Article  Google Scholar 

  • Askitas, N., & Zimmermann, K. F. (2015). The internet as a data source for advancement in social sciences. International Journal of Manpower, 36(1), 2–12.

    Article  Google Scholar 

  • Balconi, M., Breschi, S., & Lissoni, F. (2004). Networks of inventors and the role of academia: An exploration of Italian patent data. Research Policy, 33(1), 127–145.

    Article  Google Scholar 

  • Bañuls, V. A., & Salmeron, J. L. (2008). Foresighting key areas in the information technology industry. Technovation, 28(3), 103–111.

    Article  Google Scholar 

  • Bermudez-Edo, M., Noguera, M., Hurtado-Torres, N., Hurtado, M. V., & Garrido, J. L. (2013). Analyzing a firm’s international portfolio of technological knowledge: A declarative ontology-based owl approach for patent documents. Advanced Engineering Informatics, 27(3), 358–365.

    Article  Google Scholar 

  • Bessen, J. (2008). The value of US patents by owner and patent characteristics. Research Policy, 37(5), 932–945.

    Article  Google Scholar 

  • Bierly, P., & Chakrabarti, A. (1996). Determinants of technology cycle time in the US pharmaceutical industry’. R&D Management, 26(2), 115–126.

    Article  Google Scholar 

  • Bishop, C. M. (2006). Pattern recognition and machine learning (information science and statistics). New York: Springer.

    Google Scholar 

  • Boyack, K. W., & Klavans, R. (2010). Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? Journal of the American Society for Information Science and Technology, 61(12), 2389–2404.

    Article  Google Scholar 

  • Breitzman, A., & Thomas, P. (2015). The emerging clusters model: A tool for identifying emerging technologies across multiple patent systems. Research policy, 44(1), 195–205.

    Article  Google Scholar 

  • Chen, J., Hu, P., Zhou, H., Yang, J., Xie, J., Jiang, Y., Gao, Z., & Zhang, C. (2019). Toward Intelligent Machine Tool. Engineering, 5(4), 679–690.

    Article  Google Scholar 

  • Cho, Y. Y., Jeong, G. H., & Kim, S. H. (1991). A Delphi technology forecasting approach using a semi-Markov concept. Technological Forecasting and Social Change, 40(3), 273–287.

    Article  Google Scholar 

  • Choi, S., & Jun, S. (2014). Vacant technology forecasting using new bayesian patent clustering. Technology Analysis & Strategic Management, 26(3), 241–251.

    Article  Google Scholar 

  • Cozzens, S., Gatchair, S., Kang, J., Kim, K. S., Lee, H. J., Ordóñez, G., & Porter, A. (2010). Emerging technologies: quantitative identification and measurement. Technology Analysis & Strategic Management, 22(3), 361–376.

    Article  Google Scholar 

  • Day, G. S., & Schoemaker, P. J. (2000). Avoiding the pitfalls of emerging technologies. California Management Review, 42(2), 8–33.

    Article  Google Scholar 

  • Eaton, W., Wright, W., Whyte, K., Gasteyer, S. P., & Gehrke, P. J. (2014). Engagement and uncertainty: emerging technologies challenge the work of engagement. Journal of Higher Education Outreach and Engagement, 18(2), 151–178.

    Google Scholar 

  • Ernst, H. (1998). Patent portfolios for strategic R&D planning. Journal of Engineering and Technology Management, 15(4), 279–308.

    Article  Google Scholar 

  • Ernst, H. (2003). Patent information for strategic technology management. World Patent Information, 25(3), 233–242.

    Article  Google Scholar 

  • Ernst, H., & Omland, N. (2011). The Patent Asset Index–A new approach to benchmark patent portfolios. World Patent Information, 33(1), 34–41.

    Article  Google Scholar 

  • e Sousa, L. R., Miranda, T., e Sousa, R. L., & Tinoco, J. (2017). The use of data mining techniques in rockburst risk assessment. Engineering, 3(4), 552–558.

    Article  Google Scholar 

  • Fernández-Ribas, A. (2010). International patent strategies of small and large firms: An empirical study of nanotechnology. Review of Policy Research, 27(4), 457–473.

    Article  Google Scholar 

  • Fiore, U., De Santis, A., Perla, F., Zanetti, P., & Palmieri, F. (2017). Using generative adversarial networks for improving classification effectiveness in credit card fraud detection. Information Sciences, 479, 448–455.

    Article  Google Scholar 

  • Gerken, J. M., & Moehrle, M. G. (2012). A new instrument for technology monitoring: Novelty in patents measured by semantic patent analysis. Scientometrics, 91(3), 645–670.

    Article  Google Scholar 

  • Geum, Y., Kim, C., Lee, S., & Kim, M. S. (2012). Technological convergence of IT and BT: Evidence from patent analysis. Etri Journal, 34(3), 439–449.

    Article  Google Scholar 

  • Geum, Y., Lee, S., Yoon, B., & Park, Y. (2013). Identifying and evaluating strategic partners for collaborative R&D: Index-based approach using patents and publications. Technovation, 33(6–7), 211–224.

    Article  Google Scholar 

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT press.

    MATH  Google Scholar 

  • Guellec, D., & de la Potterie, B. V. P. (2000). Applications, grants and the value of patent. Economics Letters, 69(1), 109–114.

    Article  MATH  Google Scholar 

  • Guo, J., Wang, X., Li, Q., & Zhu, D. (2016). Subject–action–object-based morphology analysis for determining the direction of technological change. Technological Forecasting and Social Change, 105, 27–40.

    Article  Google Scholar 

  • Halaweh, M. (2013). Emerging technology: What is it. Journal of Technology Management & Innovation, 8(3), 108–115.

    Article  Google Scholar 

  • Harhoff, D., Narin, F., Scherer, F. M., & Vopel, K. (1999). Citation frequency and the value of patented inventions. Review of Economics and statistics, 81(3), 511–515.

    Article  Google Scholar 

  • Harhoff, D., Scherer, F. M., & Vopel, K. (2003). Citations, family size, opposition and the value of patent rights. Research Policy, 32(8), 1343–1363.

    Article  Google Scholar 

  • Hassan, S. U., Imran, M., Iqbal, S., Aljohani, N. R., & Nawaz, R. (2018). Deep context of citations using machine-learning models in scholarly full-text articles. Scientometrics, 117(3), 1645–1662.

    Article  Google Scholar 

  • Haupt, R., Kloyer, M., & Lange, M. (2007). Patent indicators for the technology life cycle development. Research Policy, 36(3), 387–398.

    Article  Google Scholar 

  • Hiltunen, E. (2008). Good sources of weak signals: A global study of where futurists look for weak signals. Journal of Futures Studies, 12(4), 21–44.

    Google Scholar 

  • Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.

    Article  MathSciNet  MATH  Google Scholar 

  • Injadat, M., Salo, F., & Nassif, A. B. (2016). Data mining techniques in social media: A survey. Neurocomputing, 214, 654–670.

    Article  Google Scholar 

  • Jaffe, A. B., & Trajtenberg, M. (2002). Patents, citations, and innovations: A window on the knowledge economy. Cambridge: MIT press.

    Google Scholar 

  • Jang, H. J., Woo, H. G., & Lee, C. (2017). Hawkes process-based technology impact analysis. Journal of Informetrics, 11(2), 511–529.

    Article  Google Scholar 

  • Jeong, Y., Park, I., & Yoon, B. (2016). Forecasting technology substitution based on hazard function. Technological Forecasting and Social Change, 104, 259–272.

    Article  Google Scholar 

  • Kalampokis, E., Tambouris, E., & Tarabanis, K. (2013). Understanding the predictive power of social media. Internet Research, 23(5), 544–559.

    Article  Google Scholar 

  • Kayal, A. A., & Waters, R. C. (1999). An empirical evaluation of the technology cycle time indicator as a measure of the pace of technological progress in superconductor technology. IEEE Transactions on Engineering Management, 46(2), 127–131.

    Article  Google Scholar 

  • Kessler, M. M. (1963). Bibliographic coupling between scientific papers. American Documentation, 14(1), 10–25.

    Article  Google Scholar 

  • Kim, G., & Bae, J. (2017). A novel approach to forecast promising technology through patent analysis. Technological Forecasting and Social Change, 117, 228–237.

    Article  Google Scholar 

  • Köhler, A. R., & Som, C. (2014). Risk preventative innovation strategies for emerging technologies the cases of nano-textiles and smart textiles. Technovation, 34(8), 420–430.

    Article  Google Scholar 

  • Kong, D., Zhou, Y., Liu, Y., & Xue, L. (2017). Using the data mining method to assess the innovation gap: A case of industrial robotics in a catching-up country. Technological Forecasting and Social Change, 119, 80–97.

    Article  Google Scholar 

  • Kreuchauff, F., & Korzinov, V. (2017). A patent search strategy based on machine learning for the emerging field of service robotics. Scientometrics, 111(2), 743–772.

    Article  Google Scholar 

  • Kwon, H., Kim, J., & Park, Y. (2017). Applying LSA text mining technique in envisioning social impacts of emerging technologies: The case of drone technology. Technovation, 60, 15–28.

    Article  Google Scholar 

  • Kyebambe, M. N., Cheng, G., Huang, Y., He, C., & Zhang, Z. (2017). Forecasting emerging technologies: A supervised learning approach through patent analysis. Technological Forecasting and Social Change, 125, 236–244.

    Article  Google Scholar 

  • Lanjouw, J. O., Pakes, A., & Putnam, J. (1998). How to count patents and value intellectual property: The uses of patent renewal and application data. The Journal of Industrial Economics, 46(4), 405–432.

    Article  Google Scholar 

  • Lanjouw, J. O., & Schankerman, M. (1997). Stylized facts of patent litigation: Value, scope and ownership (No. w6297). National Bureau of Economic Research.

  • Lanjouw, J. O., & Schankerman, M. (2001). Characteristics of patent litigation: A window on competition. RAND Journal of Economics, 32, 129–151.

    Article  Google Scholar 

  • Lee, C., Cho, Y., Seol, H., & Park, Y. (2012). A stochastic patent citation analysis approach to assessing future technological impacts. Technological Forecasting and Social Change, 79(1), 16–29.

    Article  Google Scholar 

  • Lee, C., Kim, J., Kwon, O., & Woo, H. G. (2016). Stochastic technology life cycle analysis using multiple patent indicators. Technological Forecasting and Social Change, 106, 53–64.

    Article  Google Scholar 

  • Lee, C., Kwon, O., Kim, M., & Kwon, D. (2018). Early identification of emerging technologies: A machine learning approach using multiple patent indicators. Technological Forecasting and Social Change, 127, 291–303.

    Article  Google Scholar 

  • Lee, S., Kim, W., Kim, Y. M., Lee, H. Y., & Oh, K. J. (2014). The prioritization and verification of IT emerging technologies using an analytic hierarchy process and cluster analysis. Technological Forecasting and Social Change, 87, 292–304.

    Article  Google Scholar 

  • Lee, S., Yoon, B., Lee, C., & Park, J. (2009). Business planning based on technological capabilities: Patent analysis for technology-driven roadmapping. Technological Forecasting and Social Change, 76(6), 769–786.

    Article  Google Scholar 

  • Lerner, J. (1994). The importance of patent scope: An empirical analysis. The RAND Journal of Economics, 25, 319–333.

    Article  Google Scholar 

  • Li, A., Zhang, G., Zhang, Z., Zhang, Y., Yang, K., & Qiang, H. (2017). Recent patents on design and simulation of dual-driving electric spindles. Recent Patents on Mechanical Engineering, 10(4), 326–335.

    Google Scholar 

  • Li, S., Hu, J., Cui, Y., & Hu, J. (2018). DeepPatent: Patent classification with convolutional neural networks and word embedding. Scientometrics, 117(2), 721–744.

    Article  Google Scholar 

  • Li, X., Xie, Q., Jiang, J., Zhou, Y., & Huang, L. (2019). Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology. Technological Forecasting and Social Change, 146, 687–705.

    Article  Google Scholar 

  • Liu, Y., Zhou, Y., Liu, X., Dong, F., Wang, C., & Wang, Z. (2019). Wasserstein GAN-based small-sample augmentation for new-generation artificial intelligence: A case study of cancer-staging data in biology. Engineering, 5(1), 156–163.

    Article  Google Scholar 

  • Ma, Z., & Lee, Y. (2008). Patent application and technological collaboration in inventive activities: 1980–2005. Technovation, 28(6), 379–390.

    Article  Google Scholar 

  • Martin, B. R. (1995). Foresight in science and technology. Technology Analysis & Strategic Management, 7(2), 139–168.

    Article  Google Scholar 

  • Martinov, G. M., & Kozak, N. V. (2016). Specialized numerical control system for five-axis planing and milling center. Russian Engineering Research, 36(3), 218–222.

    Article  Google Scholar 

  • Meyer, M. (2000). Does science push technology? Patents citing scientific literature. Research policy, 29(3), 409–434.

    Article  Google Scholar 

  • Meyer, M. (2006). Are patenting scientists the better scholars?: An exploratory comparison of inventor-authors with their non-inventing peers in nano-science and technology. Research Policy, 35(10), 1646–1662.

    Article  Google Scholar 

  • Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between US technology and public science. Research policy, 26(3), 317–330.

    Article  Google Scholar 

  • Narin, F., Noma, E., & Perry, R. (1987). Patents as indicators of corporate technological strength. Research policy, 16(2–4), 143–155.

    Article  Google Scholar 

  • Noh, H., Song, Y. K., & Lee, S. (2016). Identifying emerging core technologies for the future: Case study of patents published by leading telecommunication organizations. Telecommunications Policy, 40(10–11), 956–970.

    Article  Google Scholar 

  • OuYang, K., & Weng, C. S. (2011). A new comprehensive patent analysis approach for new product design in mechanical engineering. Technological Forecasting and Social Change, 78(7), 1183–1199.

    Article  Google Scholar 

  • Pakes, A., & Schankerman, M. (1984). The rate of obsolescence of patents, research gestation lags, and the private rate of return to research resources. In R&D, patents, and productivity (pp. 73–88). University of Chicago Press.

  • Porter, A. L., & Detampel, M. J. (1995). Technology opportunities analysis. Technological Forecasting and Social Change, 49(3), 237–255.

    Article  Google Scholar 

  • Porter, A. L., Roessner, J. D., Jin, X. Y., & Newman, N. C. (2002). Measuring national ‘emerging technology’capabilities. Science and Public Policy, 29(3), 189–200.

    Article  Google Scholar 

  • Raford, N. (2015). Online foresight platforms: Evidence for their impact on scenario planning & strategic foresight. Technological Forecasting and Social Change, 97, 65–76.

    Article  Google Scholar 

  • Rotolo, D., Hicks, D., & Martin, B. R. (2015). What is an emerging technology? Research Policy, 44(10), 1827–1843.

    Article  Google Scholar 

  • Sakata, I., Sasaki, H., Akiyama, M., Sawatani, Y., Shibata, N., & Kajikawa, Y. (2013). Bibliometric analysis of service innovation research: Identifying knowledge domain and global network of knowledge. Technological Forecasting and Social Change, 80(6), 1085–1093.

    Article  Google Scholar 

  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85–117.

    Article  Google Scholar 

  • Song, B., Seol, H., & Park, Y. (2016). A patent portfolio-based approach for assessing potential R&D partners: An application of the Shapley value. Technological Forecasting and Social Change, 103, 156–165.

    Article  Google Scholar 

  • Song, K., Kim, K., & Lee, S. (2018). Identifying promising technologies using patents: A retrospective feature analysis and a prospective needs analysis on outlier patents. Technological Forecasting and Social Change, 128, 118–132.

    Article  Google Scholar 

  • Sternitzke, C., Bartkowski, A., & Schramm, R. (2008). Visualizing patent statistics by means of social network analysis tools. World Patent Information, 30(2), 115–131.

    Article  Google Scholar 

  • Sun, Y., Kamel, M. S., Wong, A. K. C., & Wang, Y. (2007). Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12), 3358–3378.

    Article  MATH  Google Scholar 

  • Tong, X., & Frame, J. D. (1994). Measuring national technological performance with patent claims data. Research Policy, 23(2), 133–141.

    Article  Google Scholar 

  • Trajtenberg, M. (1990). Economic analysis of product innovation: The case of CT scanners (Vol. 16). Cambridge: Harvard University Press.

    Google Scholar 

  • Trappey, C. V., Wu, H. Y., Taghaboni-Dutta, F., & Trappey, A. J. (2011). Using patent data for technology forecasting: China RFID patent analysis. Advanced Engineering Informatics, 25(1), 53–64.

    Article  Google Scholar 

  • Wang, Y., & Xu, W. (2018). Leveraging deep learning with LDA-based text analytics to detect automobile insurance fraud. Decision Support Systems, 105, 87–95.

    Article  Google Scholar 

  • Yau, C. K., Porter, A., Newman, N., & Suominen, A. (2014). Clustering scientific documents with topic modeling. Scientometrics, 100(3), 767–786.

    Article  Google Scholar 

  • Yoon, J., & Kim, K. (2012). Detecting signals of new technological opportunities using semantic patent analysis and outlier detection. Scientometrics, 90(2), 445–461.

    Article  Google Scholar 

  • Zhang, X., Sui, H., Zhang, D., & Jiang, X. (2018a). Study on the separation effect of high-speed ultrasonic vibration cutting. Ultrasonics, 87, 166–181.

    Article  Google Scholar 

  • Zhang, Y., Lu, J., Liu, F., Liu, Q., Porter, A., Chen, H., et al. (2018b). Does deep learning help topic extraction? A kernel k-means clustering method with word embedding. Journal of Informetrics, 12(4), 1099–1117.

    Article  Google Scholar 

  • Zhou, J. (2015). Intelligent manufacturing—main direction of “made in China 2025”. China Mechanical Engineering, 26(17), 2273–2284.

    MathSciNet  Google Scholar 

  • Zhou, J., Li, P., Zhou, Y., Wang, B., Zang, J., & Meng, L. (2018). Toward new-generation intelligent manufacturing. Engineering, 4(1), 11–20.

    Article  Google Scholar 

  • Zhou, Y., Dong, F., Kong, D., & Liu, Y. (2019a). Unfolding the convergence process of scientific knowledge for the early identification of emerging technologies. Technological Forecasting and Social Change, 144, 205–220.

    Article  Google Scholar 

  • Zhou, Y., Dong, F., Liu, Y., Li, Z., Du, J., & Zhang, L. (2020). Forecasting emerging technologies using data augmentation and deep learning. Scientometrics, 123(1), 1–29.

  • Zhou, Y., Lin, H., Liu, Y., & Ding, W. (2019b). A novel method to identify emerging technologies using a semi-supervised topic clustering model: a case of 3D printing industry. Scientometrics, 120(1), 167–185.

  • Zhuang, Y. T., Wu, F., Chen, C., & Pan, Y. H. (2017). Challenges and opportunities: from big data to knowledge in AI 2.0. Frontiers of Information Technology & Electronic Engineering, 18(1), 3–14.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (71974107, 91646102, L1924058, L1824039, L1724034, L1624045 and L1524015), the Ministry of Education in China Project of Humanities and Social Sciences (Engineering and Technology Talent Cultivation) (16JDGC011), the UK-China Industry Academia Partnership Programme (UK-CIAPP\260), the Volvo-supported Green Economy and Sustainable Development Tsinghua University (20153000181), as well as the Chinese Academy of Engineering’s China Knowledge Centre for Engineering Sciences an Technology Project (CKCEST-2020-2-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufei Liu.

Appendix 1

Search formula for the CNC machine tool technology.

ABD=((machine bed) OR ((accuracy OR stiffness OR vibration ADJ resistance OR thermal ADJ deformation OR low-speed ADJ motion ADJ stability) AND (machine process)) OR (Structural ADJ process ADJ design OR processing ADJ technology OR assembly ADJ processability OR maintenance ADJ processability OR Support design) OR (spindle ADJ Bearing) OR (feed ADJ system) OR (slide ADJ rail) OR (Linear ADJ Motor) OR (Torque ADJ motor) OR (Screw ADJ nut) OR (gear ADJ rack) OR (Turbine AND worm) OR (Hydraulic ADJ system) OR (Spindle ADJ lubrication OR oil ADJ mist ADJ lubrication OR grease ADJ lubrication) OR (Chip ADJ removal) OR (Spindle cooling) OR (screw ADJ cooling) OR (Tool changer) OR (Arc cam) OR (Rotary Table OR turntable) OR (robots integration) OR (Networked ADJ integration) OR ((open ADJ loop) OR (closed ADJ loop) OR (semi-closed ADJ loop) OR (half ADJ closed ADJ loop)) OR (fieldbus OR profibus) OR (motion ADJ control ADJ card) OR ((pulse ADJ string) OR (pulse ADJ train) AND (control)) OR (Intelligent ADJ servo) OR (Data ADJ validation) OR (optical-electricity ADJ encoder) OR (optical ADJ encoder) OR (linear ADJ grating) OR (MCA-BTA) OR (voice ADJ sensor) OR (on-machine ADJ test) OR (on ADJ machine ADJ verification) OR (OMV) OR (slotting ADJ machine) OR (broaching ADJ machine) OR (Gear ADJ processing) OR (Gear ADJ machining) OR (worm-and-worm ADJ wheel) OR (Screw ADJ Machining) OR (rough ADJ machining) OR (fine ADJ machining) OR (fine ADJ finishing) OR (finish ADJ machining) OR (tool ADJ path ADJ machining) OR (tool ADJ path ADJ processing) OR (Forming ADJ tool ADJ machining) OR (Forming ADJ tool ADJ processing) OR (Computer ADJ Aided ADJ Process ADJ Planning) OR (CAPP) OR (computer ADJ simulation ADJ technology) OR (program ADJ optimization) OR (Tool ADJ path ADJ generation) OR (process ADJ database) OR (workshop AND ((video ADJ monitoring) OR (video ADJ surveillance))) OR (CoAP) OR (Data Distribution Service) OR (MQTT) OR (OPC-UA) OR (NC-Link) OR (Edge ADJ Computing) OR (Fog ADJ Computing) OR (cloud platform) OR (data ADJ compression) OR (signal ADJ source ADJ separation) OR (Distributed Control System) OR (feedback control) OR (Ethernet) OR (internet) OR (3G OR 4G OR 5G) OR (wifi) OR (wireless network) OR (cluster AND management) OR (hub AND management) OR (workflow AND management) OR ((data process* OR data access* OR data deliver* OR time-domain OR frequency-domain) AND service) OR (distribut* ADJ comput*) OR (user interface) OR (data ADJ analy*) OR (Dynamic ADJ visualization)) AND IC=((B23) OR (G05B001918)) AND AD>=(19,970,101) OR ABD=((Machine design technology) OR (spindle ADJ system) OR (Electric ADJ Spindle) OR (Motor ADJ Spindle) OR (high ADJ speed ADJ spindle) OR (High ADJ Frequency ADJ Spindle) OR (Direct ADJ Drive ADJ Spindle) OR (Mechanical ADJ spindle) OR (Hydraulic ADJ spindle) OR (Pneumatic ADJ spindle) OR (Tool ADJ magazine) OR ((fieldbus) AND (protocols)) OR (compound) AND ((3-axis) OR (three-axis)) AND ((5-axis) OR (five-axis)) OR ((edge) AND (intelligent ADJ module)) OR (MACHINE ADJ TOOL*) OR (CNC) OR (numerical ADJ control machine) OR (FIVE-AXIS*) OR (machining ADJ center) OR (machining ADJ centre) OR (milling ADJ center) OR (milling ADJ centre) OR (grinding ADJ center) OR (grinding ADJ centre) OR (turing ADJ center) OR (turing ADJ centre)) AND IC=((B22F) OR (B23) OR (B24B) OR (B26F) OR (F16F) OR (G01B) OR (G01M) OR (G01N) OR (G01P) OR (G01R) OR (G01S) OR (G02B) OR (G03F) OR (G05B) OR (G06F) OR (G06T) OR (G08C) OR (H02K) OR (H03M) OR (H04J) OR (H04L)) AND AD>=(19,970,101).

Appendix 2

See Table 4.

Table 4 Indicators and impacts of outlier patents

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Dong, F., Liu, Y. et al. A deep learning framework to early identify emerging technologies in large-scale outlier patents: an empirical study of CNC machine tool. Scientometrics 126, 969–994 (2021). https://doi.org/10.1007/s11192-020-03797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11192-020-03797-8

Keywords

Navigation