Skip to main content

Advertisement

Log in

Nutritional and non-nutritional agents that stimulate white adipose tissue browning

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Obesity is a public health problem present in both developed and developing countries. The white adipose tissue (WAT) is the main deposit of lipids when there is an excess of energy. Its pathological growth is directly linked to the development of obesity and to a wide number of comorbidities, such as insulin-resistance, cardiovascular disease, among others. In this scenario, it becomes imperative to develop new approaches to the treatment and prevention of obesity and its comorbidities. It has been documented that the browning of WAT could be a suitable strategy to tackle the obesity epidemic that is developing worldwide. Currently there is an intense search for bioactive compounds with anti-obesity properties, which present the particular ability to generate thermogenesis in the brown adipose tissue (BAT) or beige. The present study provide recent information of the bioactive nutritional compounds capable of inducing thermogenesis and therefore capable of generate positive effects on health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

AC:

Adenylate Cyclase (AC)

ALA:

Alpha-linolenic acid

cAMP:

Cyclic adenosine monophosphate

AR-β3:

β3 adrenergic receptor

ARA:

Arachidonic acid

ATF2:

Activating Transcription Factor 2

BAT:

Brown Adipose Tissue

BC:

β-carotene

CNS:

Central Nervous System

DHA:

Docosahexaenoic acid

DIO2:

Type II iodothyronine deiodinase

EPA:

Eicosapentaenoic acid

EGCG:

Epigallocatechin gallate

FX:

Fucoxanthin

18FDG PET/CT:

18F-fluorodeoxyglucose positron emission tomography combined with computed tomography

LCPUFA:

Long chain polyunsaturated fatty acids

MC4R:

Melanocortin-4 receptor

NE:

Norepinephrine

PGC1α:

Peroxisome proliferation-activation receptor and coactivator 1α

PPARα:

Receptor activado por proliferador de peroxisoma α

PRDM16:

PR domain zinc finger protein 16

RA:

Retinoic acid

Rald:

Retinaldehyde

RMR:

Resting metabolic rate

RXR:

Retinoid X Receptor

SAs:

Alkaloids of synephrine

TLQP-21:

Neuroendocrine VGF-derived peptide

UCP-1:

Uncoupling protein 1

VGF:

Nerve growth factor inducible

WAT:

White Adipose Tissue

WHO:

World Health Organization

References

  1. Zulet MA, Puchau B, Navarro C, Marti A, Martinez JA. Inflammatory biomarkers: the link between obesity and associated pathologies. Nutr Hosp. 2007;22(5):511–27.

    CAS  PubMed  Google Scholar 

  2. Trayhurn P. Origins and early development of the concept that brown adipose tissue thermogenesis is linked to energy balance and obesity. Biochimie. 2017;134:62–70. https://doi.org/10.1016/j.biochi.2016.09.007.

    Article  CAS  PubMed  Google Scholar 

  3. Gomez-Hernandez A, Perdomo L, Escribano O, Benito M. Role of white adipose tissue in vascular complications due to obesity. Clin Investig Arterioscler. 2013;25(1):27–35. https://doi.org/10.1016/j.arteri.2012.11.003.

    Article  PubMed  Google Scholar 

  4. Contreras C, Nogueiras R, Dieguez C, Medina-Gomez G, Lopez M. Hypothalamus and thermogenesis: heating the BAT, browning the WAT. Mol Cell Endocrinol. 2016;438:107–15. https://doi.org/10.1016/j.mce.2016.08.002.

    Article  CAS  PubMed  Google Scholar 

  5. Khan MI, Anjum FM, Sohaib M, Sameen A. Tackling metabolic syndrome by functional foods. Rev Endocr Metab Disord. 2013;14(3):287–97. https://doi.org/10.1007/s11154-013-9270-8.

    Article  CAS  PubMed  Google Scholar 

  6. Montanari T, Poscic N, Colitti M. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review. Obes Rev. 2017;18(5):495–513. https://doi.org/10.1111/obr.12520.

    Article  CAS  PubMed  Google Scholar 

  7. Lorente-Cebrian S, Costa AG, Navas-Carretero S, Zabala M, Martinez JA, Moreno-Aliaga MJ. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. J Physiol Biochem. 2013;69(3):633–51. https://doi.org/10.1007/s13105-013-0265-4.

    Article  CAS  PubMed  Google Scholar 

  8. Guo H, Ling W. The update of anthocyanins on obesity and type 2 diabetes: experimental evidence and clinical perspectives. Rev Endocr Metab Disord. 2015;16(1):1–13. https://doi.org/10.1007/s11154-014-9302-z.

    Article  CAS  PubMed  Google Scholar 

  9. Coelho M, Oliveira T, Fernandes R. Biochemistry of adipose tissue: an endocrine organ. Arch Med Sci. 2013;9(2):191–200. https://doi.org/10.5114/aoms.2013.33181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ravussin E, Galgani JE. The implication of brown adipose tissue for humans. Annu Rev Nutr. 2011;31:33–47. https://doi.org/10.1146/annurev-nutr-072610-145209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10(1):24–36. https://doi.org/10.1038/nrendo.2013.204.

    Article  CAS  PubMed  Google Scholar 

  12. Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293(2):E444–52. https://doi.org/10.1152/ajpendo.00691.2006.

    Article  CAS  PubMed  Google Scholar 

  13. Timmons JA, Wennmalm K, Larsson O, Walden TB, Lassmann T, Petrovic N, et al. Myogenic gene expression signature establishes that brown and white adipocytes originate from distinct cell lineages. Proc Natl Acad Sci U S A. 2007;104(11):4401–6. https://doi.org/10.1073/pnas.0610615104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol. 2013;15(6):659–67. https://doi.org/10.1038/ncb2740.

    Article  CAS  PubMed  Google Scholar 

  15. Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci U S A. 2011;108(1):143–8. https://doi.org/10.1073/pnas.1010929108.

    Article  PubMed  Google Scholar 

  16. Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, et al. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol. 2004;24(7):3057–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Martinez-deMena R, Obregon MJ. Insulin increases the adrenergic stimulation of 5′ deiodinase activity and mRNA expression in rat brown adipocytes; role of MAPK and PI3K. J Mol Endocrinol. 2005;34(1):139–51. https://doi.org/10.1677/jme.1.01568.

    Article  CAS  PubMed  Google Scholar 

  18. Bonet ML, Oliver P, Palou A. Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim Biophys Acta. 2013;1831(5):969–85. https://doi.org/10.1016/j.bbalip.2012.12.002.

    Article  CAS  PubMed  Google Scholar 

  19. Shi SY, Zhang W, Luk CT, Sivasubramaniyam T, Brunt JJ, Schroer SA, et al. JAK2 promotes brown adipose tissue function and is required for diet- and cold-induced thermogenesis in mice. Diabetologia. 2016;59(1):187–96. https://doi.org/10.1007/s00125-015-3786-2.

    Article  CAS  PubMed  Google Scholar 

  20. Boutant M, Joffraud M, Kulkarni SS, Garcia-Casarrubios E, Garcia-Roves PM, Ratajczak J, et al. SIRT1 enhances glucose tolerance by potentiating brown adipose tissue function. Mol Metab. 2015;4(2):118–31. https://doi.org/10.1016/j.molmet.2014.12.008.

    Article  CAS  PubMed  Google Scholar 

  21. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–39.

    Article  CAS  PubMed  Google Scholar 

  22. Kajimura S, Seale P, Spiegelman BM. Transcriptional control of brown fat development. Cell Metab. 2010;11(4):257–62. https://doi.org/10.1016/j.cmet.2010.03.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell. 2012;150(3):620–32. https://doi.org/10.1016/j.cell.2012.06.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60. https://doi.org/10.1038/nature07813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. 2007;104(29):12017–22. https://doi.org/10.1073/pnas.0705070104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rezai-Zadeh K, Yu S, Jiang Y, Laque A, Schwartzenburg C, Morrison CD, et al. Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol Metab. 2014;3(7):681–93. https://doi.org/10.1016/j.molmet.2014.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006;8(4):383–95.

    PubMed  PubMed Central  Google Scholar 

  28. Kakuma T, Wang ZW, Pan W, Unger RH, Zhou YT. Role of leptin in peroxisome proliferator-activated receptor gamma coactivator-1 expression. Endocrinology. 2000;141(12):4576–82. https://doi.org/10.1210/endo.141.12.7804.

    Article  CAS  PubMed  Google Scholar 

  29. Rachid TL, Penna-de-Carvalho A, Bringhenti I, Aguila MB, Mandarim-de-Lacerda CA, Souza-Mello V. PPAR-alpha agonist elicits metabolically active brown adipocytes and weight loss in diet-induced obese mice. Cell Biochem Funct. 2015;33(4):249–56. https://doi.org/10.1002/cbf.3111.

    Article  CAS  PubMed  Google Scholar 

  30. Bartolomucci A, La Corte G, Possenti R, Locatelli V, Rigamonti AE, Torsello A, et al. TLQP-21, a VGF-derived peptide, increases energy expenditure and prevents the early phase of diet-induced obesity. Proc Natl Acad Sci U S A. 2006;103(39):14584–9. https://doi.org/10.1073/pnas.0606102103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao L, Choi EY, Liu X, Martin A, Wang C, Xu X, et al. White to brown fat phenotypic switch induced by genetic and environmental activation of a hypothalamic-adipocyte axis. Cell Metab. 2011;14(3):324–38. https://doi.org/10.1016/j.cmet.2011.06.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15):1518–25. https://doi.org/10.1056/NEJMoa0808949.

    Article  CAS  PubMed  Google Scholar 

  33. Christoffolete MA, Linardi CC, de Jesus L, Ebina KN, Carvalho SD, Ribeiro MO, et al. Mice with targeted disruption of the Dio2 gene have cold-induced overexpression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesis. Diabetes. 2004;53(3):577–84.

    Article  CAS  PubMed  Google Scholar 

  34. Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol. 2016;173(15):2369–89. https://doi.org/10.1111/bph.13514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nirengi S, Homma T, Inoue N, Sato H, Yoneshiro T, Matsushita M, et al. Assessment of human brown adipose tissue density during daily ingestion of thermogenic capsinoids using near-infrared time-resolved spectroscopy. J Biomed Opt. 2016;21(9):091305. https://doi.org/10.1117/1.JBO.21.9.091305.

    Article  PubMed  Google Scholar 

  36. Ang QY, Goh HJ, Cao Y, Li Y, Chan SP, Swain JL, et al. A new method of infrared thermography for quantification of brown adipose tissue activation in healthy adults (TACTICAL): a randomized trial. J Physiol Sci. 2017;67(3):395–406. https://doi.org/10.1007/s12576-016-0472-1.

    Article  CAS  PubMed  Google Scholar 

  37. Allison DB, Cutter G, Poehlman ET, Moore DR, Barnes S. Exactly which synephrine alkaloids does Citrus aurantium (bitter orange) contain? Int J Obes. 2005;29(4):443–6. https://doi.org/10.1038/sj.ijo.0802879.

    Article  CAS  Google Scholar 

  38. Stohs SJ, Preuss HG, Shara M. The safety of Citrus aurantium (bitter orange) and its primary protoalkaloid p-synephrine. Phytother Res. 2011;25(10):1421–8. https://doi.org/10.1002/ptr.3490.

    Article  CAS  PubMed  Google Scholar 

  39. de Oliveira AL, Comar JF, de Sa-Nakanishi AB, Peralta RM, Bracht A. The action of p-synephrine on hepatic carbohydrate metabolism and respiration occurs via both ca(2+)-mobilization and cAMP production. Mol Cell Biochem. 2014;388(1–2):135–47. https://doi.org/10.1007/s11010-013-1905-2.

    Article  CAS  PubMed  Google Scholar 

  40. Kim SM, Jung YJ, Kwon ON, Cha KH, Um BH, Chung D, et al. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl Biochem Biotechnol. 2012;166(7):1843–55. https://doi.org/10.1007/s12010-012-9602-2.

    Article  CAS  PubMed  Google Scholar 

  41. Woo MN, Jeon SM, Shin YC, Lee MK, Kang MA, Choi MS. Anti-obese property of fucoxanthin is partly mediated by altering lipid-regulating enzymes and uncoupling proteins of visceral adipose tissue in mice. Mol Nutr Food Res. 2009;53(12):1603–11. https://doi.org/10.1002/mnfr.200900079.

    Article  CAS  PubMed  Google Scholar 

  42. Hashimoto T, Ozaki Y, Taminato M, Das SK, Mizuno M, Yoshimura K, et al. The distribution and accumulation of fucoxanthin and its metabolites after oral administration in mice. Br J Nutr. 2009;102(2):242–8. https://doi.org/10.1017/S0007114508199007.

    Article  CAS  PubMed  Google Scholar 

  43. Bonet ML, Canas JA, Ribot J, Palou A. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Arch Biochem Biophys. 2015;572:112–25. https://doi.org/10.1016/j.abb.2015.02.022.

    Article  CAS  PubMed  Google Scholar 

  44. Serra F, Bonet ML, Puigserver P, Oliver J, Palou A. Stimulation of uncoupling protein 1 expression in brown adipocytes by naturally occurring carotenoids. Int J Obes Relat Metab Disord. 1999;23(6):650–5.

    Article  CAS  PubMed  Google Scholar 

  45. Guo H, Foncea R, O'Byrne SM, Jiang H, Zhang Y, Deis JA, et al. Lipocalin 2, a regulator of retinoid homeostasis and retinoid-mediated thermogenic activation in adipose tissue. J Biol Chem. 2016;291(21):11216–29. https://doi.org/10.1074/jbc.M115.711556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao M, Chen X. Eicosapentaenoic acid promotes thermogenic and fatty acid storage capacity in mouse subcutaneous adipocytes. Biochem Biophys Res Commun. 2014;450(4):1446–51. https://doi.org/10.1016/j.bbrc.2014.07.010.

    Article  CAS  PubMed  Google Scholar 

  47. Takahashi Y, Ide T. Dietary n-3 fatty acids affect mRNA level of brown adipose tissue uncoupling protein 1, and white adipose tissue leptin and glucose transporter 4 in the rat. Br J Nutr. 2000;84(2):175–84.

    Article  CAS  PubMed  Google Scholar 

  48. Oudart H, Groscolas R, Calgari C, Nibbelink M, Leray C, Le Maho Y, et al. Brown fat thermogenesis in rats fed high-fat diets enriched with n-3 polyunsaturated fatty acids. Int J Obes Relat Metab Disord. 1997;21(11):955–62.

    Article  CAS  PubMed  Google Scholar 

  49. Fleckenstein-Elsen M, Dinnies D, Jelenik T, Roden M, Romacho T, Eckel J. Eicosapentaenoic acid and arachidonic acid differentially regulate adipogenesis, acquisition of a brite phenotype and mitochondrial function in primary human adipocytes. Mol Nutr Food Res. 2016;60(9):2065–75. https://doi.org/10.1002/mnfr.201500892.

    Article  CAS  PubMed  Google Scholar 

  50. Pisani DF, Ghandour RA, Beranger GE, Le Faouder P, Chambard JC, Giroud M, et al. The omega6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway. Mol Metab. 2014;3(9):834–47. https://doi.org/10.1016/j.molmet.2014.09.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Laiglesia LM, Lorente-Cebrian S, Prieto-Hontoria PL, Fernandez-Galilea M, Ribeiro SM, Sainz N, et al. Eicosapentaenoic acid promotes mitochondrial biogenesis and beige-like features in subcutaneous adipocytes from overweight subjects. J Nutr Biochem. 2016;37:76–82. https://doi.org/10.1016/j.jnutbio.2016.07.019.

    Article  CAS  PubMed  Google Scholar 

  52. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47. https://doi.org/10.1093/ajcn/79.5.727.

    Article  CAS  PubMed  Google Scholar 

  53. Jimenez-Aranda A, Fernandez-Vazquez G, Campos D, Tassi M, Velasco-Perez L, Tan DX, et al. Melatonin induces browning of inguinal white adipose tissue in Zucker diabetic fatty rats. J Pineal Res. 2013;55(4):416–23. https://doi.org/10.1111/jpi.12089.

    Article  CAS  PubMed  Google Scholar 

  54. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. 1999;70(6):1040–5. https://doi.org/10.1093/ajcn/70.6.1040.

    Article  CAS  PubMed  Google Scholar 

  55. Decorde K, Teissedre PL, Sutra T, Ventura E, Cristol JP, Rouanet JM. Chardonnay grape seed procyanidin extract supplementation prevents high-fat diet-induced obesity in hamsters by improving adipokine imbalance and oxidative stress markers. Mol Nutr Food Res. 2009;53(5):659–66. https://doi.org/10.1002/mnfr.200800165.

    Article  CAS  PubMed  Google Scholar 

  56. Arias N, Pico C, Teresa Macarulla M, Oliver P, Miranda J, Palou A, et al. A combination of resveratrol and quercetin induces browning in white adipose tissue of rats fed an obesogenic diet. Obesity (Silver Spring). 2017;25(1):111–21. https://doi.org/10.1002/oby.21706.

    Article  CAS  Google Scholar 

  57. Chang HC, Peng CH, Yeh DM, Kao ES, Wang CJ. Hibiscus sabdariffa extract inhibits obesity and fat accumulation, and improves liver steatosis in humans. Food Funct. 2014;5(4):734–9. https://doi.org/10.1039/c3fo60495k.

    Article  CAS  PubMed  Google Scholar 

  58. Rangel-Huerta OD, Aguilera CM, Martin MV, Soto MJ, Rico MC, Vallejo F, et al. Normal or high polyphenol concentration in Orange juice affects antioxidant activity, blood pressure, and body weight in obese or overweight adults. J Nutr. 2015;145(8):1808–16. https://doi.org/10.3945/jn.115.213660.

    Article  CAS  PubMed  Google Scholar 

  59. Um JH, Park SJ, Kang H, Yang S, Foretz M, McBurney MW, et al. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes. 2010;59(3):554–63. https://doi.org/10.2337/db09-0482.

    Article  CAS  PubMed  Google Scholar 

  60. Wang S, Liang X, Yang Q, Fu X, Rogers CJ, Zhu M, et al. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) alpha1. Int J Obes. 2015;39(6):967–76. https://doi.org/10.1038/ijo.2015.23.

    Article  CAS  Google Scholar 

  61. Alberdi G, Rodriguez VM, Miranda J, Macarulla MT, Churruca I, Portillo MP. Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem. 2013;141(2):1530–5. https://doi.org/10.1016/j.foodchem.2013.03.085.

    Article  CAS  PubMed  Google Scholar 

  62. Andrade JM, Frade AC, Guimaraes JB, Freitas KM, Lopes MT, Guimaraes AL, et al. Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet. Eur J Nutr. 2014;53(7):1503–10. https://doi.org/10.1007/s00394-014-0655-6.

    Article  CAS  PubMed  Google Scholar 

  63. Oi-Kano Y, Kawada T, Watanabe T, Koyama F, Watanabe K, Senbongi R, et al. Oleuropein, a phenolic compound in extra virgin olive oil, increases uncoupling protein 1 content in brown adipose tissue and enhances noradrenaline and adrenaline secretions in rats. J Nutr Sci Vitaminol (Tokyo). 2008;54(5):363–70.

    Article  CAS  Google Scholar 

  64. Wang S, Wang X, Ye Z, Xu C, Zhang M, Ruan B, et al. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way. Biochem Biophys Res Commun. 2015;466(2):247–53. https://doi.org/10.1016/j.bbrc.2015.09.018.

    Article  CAS  PubMed  Google Scholar 

  65. Lone J, Choi JH, Kim SW, Yun JW. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. J Nutr Biochem. 2016;27:193–202. https://doi.org/10.1016/j.jnutbio.2015.09.006.

    Article  CAS  PubMed  Google Scholar 

  66. Yamashita Y, Wang L, Wang L, Tanaka Y, Zhang T, Ashida H. Oolong, black and pu-erh tea suppresses adiposity in mice via activation of AMP-activated protein kinase. Food Funct. 2014;5(10):2420–9. https://doi.org/10.1039/c4fo00095a.

    Article  CAS  PubMed  Google Scholar 

  67. Rains TM, Agarwal S, Maki KC. Antiobesity effects of green tea catechins: a mechanistic review. J Nutr Biochem. 2011;22(1):1–7. https://doi.org/10.1016/j.jnutbio.2010.06.006.

    Article  CAS  PubMed  Google Scholar 

  68. Berube-Parent S, Pelletier C, Dore J, Tremblay A. Effects of encapsulated green tea and guarana extracts containing a mixture of epigallocatechin-3-gallate and caffeine on 24 h energy expenditure and fat oxidation in men. Br J Nutr. 2005;94(3):432–6.

    Article  CAS  PubMed  Google Scholar 

  69. Yoneshiro T, Matsushita M, Hibi M, Tone H, Takeshita M, Yasunaga K, et al. Tea catechin and caffeine activate brown adipose tissue and increase cold-induced thermogenic capacity in humans. Am J Clin Nutr. 2017;105(4):873–81. https://doi.org/10.3945/ajcn.116.144972.

    Article  PubMed  Google Scholar 

  70. Murase T, Misawa K, Haramizu S, Hase T. Catechin-induced activation of the LKB1/AMP-activated protein kinase pathway. Biochem Pharmacol. 2009;78(1):78–84. https://doi.org/10.1016/j.bcp.2009.03.021.

    Article  CAS  PubMed  Google Scholar 

  71. Wang S, Huang Y, Xu H, Zhu Q, Lu H, Zhang M, et al. Oxidized tea polyphenols prevent lipid accumulation in liver and visceral white adipose tissue in rats. Eur J Nutr. 2017;56(6):2037–48. https://doi.org/10.1007/s00394-016-1241-x.

    Article  CAS  PubMed  Google Scholar 

  72. Most J, Timmers S, Warnke I, Jocken JW, van Boekschoten M, de Groot P, et al. Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: a randomized controlled trial. Am J Clin Nutr. 2016;104(1):215–27. https://doi.org/10.3945/ajcn.115.122937.

    Article  CAS  PubMed  Google Scholar 

  73. Peng CH, Liu LK, Chuang CM, Chyau CC, Huang CN, Wang CJ. Mulberry water extracts possess an anti-obesity effect and ability to inhibit hepatic lipogenesis and promote lipolysis. J Agric Food Chem. 2011;59(6):2663–71. https://doi.org/10.1021/jf1043508.

    Article  CAS  PubMed  Google Scholar 

  74. Pajuelo D, Quesada H, Diaz S, Fernandez-Iglesias A, Arola-Arnal A, Blade C, et al. Chronic dietary supplementation of proanthocyanidins corrects the mitochondrial dysfunction of brown adipose tissue caused by diet-induced obesity in Wistar rats. Br J Nutr. 2012;107(2):170–8. https://doi.org/10.1017/S0007114511002728.

    Article  CAS  PubMed  Google Scholar 

  75. Anhe FF, Roy D, Pilon G, Dudonne S, Matamoros S, Varin TV, et al. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut. 2015;64(6):872–83. https://doi.org/10.1136/gutjnl-2014-307142.

    Article  CAS  PubMed  Google Scholar 

  76. Moghe SS, Juma S, Imrhan V, Vijayagopal P. Effect of blueberry polyphenols on 3T3-F442A preadipocyte differentiation. J Med Food. 2012;15(5):448–52. https://doi.org/10.1089/jmf.2011.0234.

    Article  CAS  PubMed  Google Scholar 

  77. You Y, Yuan X, Lee HJ, Huang W, Jin W, Zhan J. Mulberry and mulberry wine extract increase the number of mitochondria during brown adipogenesis. Food Funct. 2015;6(2):401–8. https://doi.org/10.1039/c4fo00719k.

    Article  CAS  PubMed  Google Scholar 

  78. Ma S, Feng J, Zhang R, Chen J, Han D, Li X, et al. SIRT1 activation by resveratrol alleviates cardiac dysfunction via mitochondrial regulation in diabetic cardiomyopathy mice. Oxidative Med Cell Longev. 2017;2017:4602715. https://doi.org/10.1155/2017/4602715.

    Article  CAS  Google Scholar 

  79. Lambert JD, Kennett MJ, Sang S, Reuhl KR, Ju J, Yang CS. Hepatotoxicity of high oral dose (−)-epigallocatechin-3-gallate in mice. Food Chem Toxicol. 2010;48(1):409–16. https://doi.org/10.1016/j.fct.2009.10.030.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by Fondecyt Project (1171550); CONICYT, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego F. Garcia-Diaz.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Concha, F., Prado, G., Quezada, J. et al. Nutritional and non-nutritional agents that stimulate white adipose tissue browning. Rev Endocr Metab Disord 20, 161–171 (2019). https://doi.org/10.1007/s11154-019-09495-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-019-09495-y

Keywords

Navigation