Skip to main content
Log in

Pulsed Power and Spectrum Composition of the Terahertz Radiation Flux Escaping from a Plasma Column Due to Propagation Through it of a Relativistic Electron Beam with Various Current Densities (GOL–PET Facility Experiments)

  • Published:
Radiophysics and Quantum Electronics Aims and scope

One of the possible applications of high-current relativistic electron beams (REBs) is to generate electromagnetic waves at plasma frequencies due to the propagation of a beam through a magnetized plasma column. Research work in this direction, aimed at creating terahertz radiation sources at the BINP, is underway using the GOL–PET facility. We study the relaxation of a REB beam with a current density of (1–2) kA/cm2 in a magnetized plasma column with a density of 5 · 1014 cm–3. The purpose of these studies is to create a pulse radiation source with a power of tens of megawatts in the frequency range 0.1–1 THz. To date, a radiation flux with a power level of 10 MW and a maximum power spectral density in the frequency range 150–200 GHz has been achieved in the experiments. Further progress in these studies was related to the experimental establishment of the dependence of the power and spectral composition of the radiation flux on the parameters of the injected beam, in particular, its current density. The current density of the injected beam was varied due to the different compression of the beam cross section by the magnetic field. The results of measuring the characteristics of the radiation flux are presented in correlation with the results of measurements of the beam current density and plasma density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Yu.Glyavin, G.G.Denisov, V. E. Zapevalov, et al., J. Commun. Technol. Electron., 59, No. 8, 792–797 (2014). https://doi.org/10.1134/S1064226914080075

    Article  Google Scholar 

  2. A. I.Klimov, S.D.Korovin, V.V.Rostov, and E.M.Tot’meninov, Tech. Phys. Lett., 32, No. 2, 120–122 (2006). https://doi.org/10.1134/S106378500602009X

  3. A. V. Arzhannikov, A. V. Burdakov, P.V.Kalinin, et al., Vestnik Novosibirsk Univ., Ser. Fiz ., 5, No. 4, 44–49 (2010).

  4. N. S. Ginzburg, N.Y.Peskov, A. S. Sergeev, et al., Phys. Rev. E, 60, No. 1, 935–945 (1999). https://doi.org/10.1103/PhysRevE.60.935

    Article  ADS  Google Scholar 

  5. A.V.Arzhannikov, N. S. Ginzburg, V.Yu. Zaslavsky, et al., JETP Lett., 87, No. 11, 618–622 (2008). https://doi.org/10.1134/S0021364008110052

    Article  ADS  Google Scholar 

  6. A.V.Arzhannikov, N. S. Ginzburg, P.V. Kalinin, et al., Phys. Rev. Lett., 117, No. 11, 114801 (2016). https://doi.org/10.1103/PhysRevLett.117.114801

    Article  ADS  Google Scholar 

  7. A. V. Arzhannikov, I. A. Ivanov, A.A.Kasatov, et al., Plasma Phys. Control. Fusion, 62, No. 4, 045002 (2020). https://doi.org/10.1088/1361-6587/ab72e3

  8. A. I. Akhiezer and Ya. B. Fainberg, Dokl. Akad. Nauk SSSR, 69, No. 3, 555–561 (1949).

    Google Scholar 

  9. A. V. Arzhannikov, A. V. Burdakov, V. S.Koidan, et al., Phys. Scr ., T2/2, 303–310 (1982).

  10. A.A.Vedenov and L. I.Rudakov, Sov. Phys. Dokl., 9, 1073–1076 (1964).

    ADS  Google Scholar 

  11. B.N.Breizman, D.D.Ryutov, and P. Z.Chebotaev, Sov. Phys. JETP, 35, No. 4, 741–747 (1972).

    ADS  Google Scholar 

  12. A. V. Arzhannikov and I. V.Timofeev, Vestnik Novosibirsk Univ., Ser. Fiz ., 11, No. 4, 78–104 (2016).

  13. A. V. Arzhannikov and I. V.Timofeev, Plasma Phys. Control. Fusion, 54, No. 10, 105004 (2012). https://doi.org/10.88/1741-3335/54/10/105004

  14. P. S. Strelkov, Phys.Usp., 62, No. 5, 465–486 (2019). https://doi.org/10.3367/UFNe.2018.09.038443

    Article  ADS  Google Scholar 

  15. V. V. Glinsky, I. V.Timofeev, V.V.Annenkov, and A. V. Arzhannikov, Sib. Fiz. Zh., 14, No. 4, 5–16 (2019). https://doi.org/10.25205/2541-9447-2019-14-4-5-16

  16. D.A. Samtsov, A.V.Arzhannikov, S. L. Sinitsky, et al., IEEE Trans. Plasma Sci., 49, No. 11, 3371–3376 (2021). https://doi.org/10.1109/TPS.2021.3108880

    Article  ADS  Google Scholar 

  17. A.V.Arzhannikov, S. L. Sinitsky, S. S.Popov, et al., IEEE Trans. Plasma Sci., 50, No. 8, 2348–2363 (2022). https://doi.org/10.1109/TPS.2022.3183629

  18. A.V.Arzhannikov, S. L. Sinitsky, D.A. Starostenko, et al., in: Proc. 5th Int. Conf. “Terahertz and Microwave Radiation: Generation, Detection and Application” (TERA-2023), February 27–March 2, 2023, Moscow, Russia, pp. 46–47. https://doi.org/10.59043/9785604953914_46_2

  19. D. A. Nikiforov, A. V.Petrenko, S. L. Sinitsky, et al., J. Instrum., 16, No. 11, P11024 (2021). https://doi.org/10.1088/1748-0221/16/11/P11024

    Article  Google Scholar 

  20. D.A. Samtsov, A.V.Arzhannikov, S. L. Sinitsky, et al., Radiophys. Quantum Electron., 65, Nos. 5–6, 313–322 (2022). https://doi.org/10.1007/s11141-023-10214-6

    Article  ADS  Google Scholar 

  21. S.A. Kuznetsov and A.V. Gelfand, Russ. Phys. J., 58, 1605–1612 (2016). https://doi.org/10.1007/s11182-016-0690-2

    Article  Google Scholar 

  22. A. V. Arzhannikov, M. A. Makarov, D. A. Samtsov, et al., Nucl. Instrum. Meth. Phys. Res. A, 942, 162349 (2019). https://doi.org/10.1016/j.nima.2019.162349

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Samtsov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 66, Nos. 7–8, pp. 595–605, July–August 2023. Russian DOI: https://doi.org/10.52452/00213462_2023_66_07_595

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samtsov, D.A., Arzhannikov, A.V., Sinitsky, S.L. et al. Pulsed Power and Spectrum Composition of the Terahertz Radiation Flux Escaping from a Plasma Column Due to Propagation Through it of a Relativistic Electron Beam with Various Current Densities (GOL–PET Facility Experiments). Radiophys Quantum El (2024). https://doi.org/10.1007/s11141-024-10314-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11141-024-10314-x

Navigation