Skip to main content
Log in

Excitation of High-Q Talbot-Type Supermodes in Oversized Cavities of High-Power Electron Masers

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the concept of creating sources of gigawatt-level powers in the subterahertz and terahertz frequency ranges, which are based on excitation of high-Q cavities by high-current relativistic electron beams. In order to ensure selective generation in a cavity with a great oversize parameter, we propose to use a high-Q supermode formed by a set of partial eigenmodes of the system. The results of theoretical analysis and numerical modeling are presented both for the “cold” problem (finding the supermode structure in the absence of the beam), and for the “hot” one, where the supermode is excited by an electron beam of small “seed” noises having a random spatiotemporal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Wenninger, F. Arbeiter, J. Aubert, et al., Nuclear Fusion, 55, 063003 (2015). https://doi.org/10.1088/0029-5515/55/6/063003

  2. S. Garavaglia, G. Aiello, S. Alberti, et al., Fusion Engineering and Design, 136, 1173–1177 (2018). https://doi.org/10.1016/j.fusengdes.2018.04.097

    Article  Google Scholar 

  3. T. M. Tran, B. Danly, J. Wurtele, et al., IEEE J. Quantum Electron., 23, 1578–1589 (1987). https://doi.org/10.1109/JQE.1987.1073537

    Article  ADS  Google Scholar 

  4. S. Tantawi, M. Shumail, J. Neilson, et al., Phys. Rev. Lett., 112, 164802 (2014). https://doi.org/10.1103/PhysRevLett.112.164802

  5. S. V.Kuzikov, A. V. Savilov, and A.A.Vikharev, Appl. Phys. Lett., 105, 033504 (2014). https://doi.org/10.1063/1.4890586

  6. R. Shayduk, V.Vonk, B.Arndt, et al., Appl. Phys. Lett., 109, 043107 (2016). https://doi.org/10.1063/1.4959252

  7. E.A.Nanni, W.Huang, K.-H.Hong, et al., Nature Commun., 6, 8486 (2015). https://doi.org/10.1038/ncomms9486

  8. M. Fakhari, A. Fallahi, and F. X. Kartner, Phys. Rev. Accel. Beams, 20, 041302 (2017). https://doi.org/10.1103/PhysRevAccelBeams.20.041302

  9. I. Fomenkov, D.Brandt, A.Ershov, et al., Adv. Opt. Technol., 6, Nos. 3–4, 173–186 (2017). https://doi.org/10.1515/aot-2017-0029

  10. I. S.Abramov, E. D. Gospodchikov, and A. G. Shalashov, Phys. Rev. Appl., 10, No. 3, Art. no. 034065 (2018). https://doi.org/10.1103/PhysRevApplied.10.034065

  11. S. G. Kalmykov, P. S.Butorin, and M. E. Sasin, J. Appl. Phys., 126, 103301 (2019). https://doi.org/10.1063/1.5115785

  12. V. Bratman, G. Denisov, N. Ginzburg, and M.Petelin, IEEE J. Quantum Electron., 19, No. 3, 282–296 (1983). https://doi.org/10.1109/JQE.1983.1071840

    Article  ADS  Google Scholar 

  13. D. Zhang, J. Zhang, H. Zhong, and Z. Jin, Phys. Plasmas, 19, 103102 (2012). https://doi.org/10.1063/1.4757636

  14. A. M. Malkin, V.Yu. Zaslavsky, I. V. Zheleznov, et al., Radiophys. Quantum Electron., 63, Nos. 5–6, 458–468 (2020). https://doi.org/10.1007/s11141-021-10071-1

    Article  ADS  Google Scholar 

  15. V. L. Bratman and A. V. Savilov, Int. J. Infrared Millim. Waves, 14, 2119–2130 (1993). https://doi.org/10.1007/BF02096377

    Article  ADS  Google Scholar 

  16. V. L. Bratman, G. G. Denisov, A. V. Savilov, et al., Nucl. Instr. Meth. Phys. Res. A, 407, 40–44 (1998). https://doi.org/10.1016/S0168-9002(97)01364-8

    Article  ADS  Google Scholar 

  17. N. S. Ginzburg, A. M. Malkin, N. Yu.Peskov, et al., Appl. Phys. Lett., 95, 043504 (2009). https://doi.org/10.1063/1.3184592

  18. A. J. MacLachlan, C.W.Robertson, I.V.Konoplev, et al., Phys. Rev. Appl., 11, 034034 (2019). https://doi.org/10.1103/PhysRevApplied.11.034034

  19. M. Thumm, J. Infrared, Millimeter, and Terahertz Waves, 41, No. 1, 1–140 (2020). https://doi.org/10.1007/s10762-019-00631-y

  20. C.Pellegrini, A. Marinelli, and S.Reiche, Rev. Modern Phys., 88, No. 1, 015006 (2016). https://doi.org/10.1103/RevModPhys.88.015006

  21. I.V. Bandurkin, Yu. S.Oparina, and A.V. Savilov, Appl. Phys. Lett., 110, No. 26. 263508 (2017). https://doi.org/10.1063/1.4990972

  22. Yu. S.Oparina and A.V. Savilov, Phys. Rev. Accel. Beams, 22, 030701 (2019). https://doi.org/10.1103/PhysRevAccelBeams.22.030701

  23. I.V. Bandurkin, Yu. S.Oparina, I.V., Osharin, and A.V. Savilov, Phys. Plasmas, 26, 113105 (2019). https://doi.org/10.1063/1.5123551

  24. H. F.Talbot, Lond. Edinb. Phil. Mag. J. Sci., 9, 401–407 (1836). https://doi.org/10.1080/14786443608649032

    Article  Google Scholar 

  25. L. A.Rivlin and V. S. Shul’dyaev, Radiophys. Quantum Electron., 11, 318?321 (1968). https://doi.org/10.1007/BF01038737

  26. S. V. Kuzikov, Int. J. Infrared Millim. Waves, 19, 1523–1539 (1998). https://doi.org/10.1023/A:1022659226471

    Article  Google Scholar 

  27. H. S. Marks and A. Gover, IEEE Trans. Microw. Theory Tech., 66, 3–10 (2018). https://doi.org/10.1109/TMTT.2017.2737995

    Article  ADS  Google Scholar 

  28. Yu. S.Oparina, A.V. Savilov, and D.Yu. Shchegolkov, J. Appl. Phys., 128, No. 11, 114502 (2020). https://doi.org/10.1063/5.0022666

  29. P. V. Logachev, G. I. Kuznetsov, A. A.Korepanov, et al., Instrum. Exp. Tech., 56, No. 6, 672–679 (2013). https://doi.org/10.1134/S0020441213060195

  30. A. Akimov, P.Bak, P. Logachev, and O.Nikitin, 2015 IEEE Pulsed Power Conference. May 31—June 4, 2015, Austin, USA, 7296931 (2015). https://doi.org/10.1109/PPC.2015.7296931

  31. Yu. S.Oparina, N.Yu.Peskov, and A.V. Savilov, Phys. Rev. Appl., 12, 044070 (2019). https://doi.org/10.1103/PhysRevApplied.12.044070

  32. N. S. Ginzburg and N.Y.Peskov, Phys. Rev. ST-AB, 2013. V. 16, 090701 (2013). https://doi.org/10.1103/PhysRevSTAB.16.090701

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Oparina.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 65, No. 3, pp. 184–197, January 2022. Russian DOI:https://doi.org/10.52452/00213462_2022_65_03_184

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oparina, Y.S., Peskov, N.Y., Savilov, A.V. et al. Excitation of High-Q Talbot-Type Supermodes in Oversized Cavities of High-Power Electron Masers. Radiophys Quantum El 65, 170–182 (2022). https://doi.org/10.1007/s11141-023-10203-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-023-10203-9

Navigation