Skip to main content
Log in

Quasi-Optical Sub-Doppler Lamb-Dip Spectrometer

  • Published:
Radiophysics and Quantum Electronics Aims and scope

A Correction to this article was published on 01 June 2022

This article has been updated

We describe a new sub-Doppler spectrometer with an enlarged gas cell, which was created at the IAP RAS for high-precision laboratory measurements of molecular transitions at millimeter and submillimeter wavelengths in the interests of radio astronomy. By using a larger diameter with a shortened cell length, a calibrated attenuator for radiation power adjustment, and synthesizers with lower phase noise, it was possible to eliminate a number of shortcomings of the previous spectrometer and not only to measure with high accuracy the transition frequencies of a number of molecules taking into account hyperfine splitting, but also to study their shifts due to both pressure and radiation power. In particular, information about precise frequencies will be used to examine the inner dynamics in the star-forming regions, and also to search for variations of fundamental constants. The principle of frequency-independent cell-aperture irradiation was employed when the optical scheme of the spectrometer was designed. The examples show Lamb-dip measurements of the hyperfine structure in the CH3CN and HNCO molecular lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. G. Cazzoli, C. Puzzarini, and A.V. Lapinov, Astrophys. J., 592, L95–L98 (2003). https://doi.org/10.1086/377527

    Article  ADS  Google Scholar 

  2. G. Cazzoli, C. Puzzarini, and A.V. Lapinov, Astrophys. J., 611, 615–620 (2004). https://doi.org/10.1086/421992

    Article  ADS  Google Scholar 

  3. A. V. Lapinov, Proc. SPIE, 6580, 658001 (2006). https://doi.org/10.1117/12.724761

    Article  Google Scholar 

  4. F. J. Lovas, J. Phys. Chem. Ref. Data, 33, 177–355 (2004). https://doi.org/10.1063/1.1633275

    Article  ADS  Google Scholar 

  5. V. S. Letokhov and V.P.Chebotaev, Ultra-High Resolution Nonlinear Laser Spectroscopy [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  6. G.Yu.Golubyatnikov, S. P. Belov, I. I. Leonov, et al., Radiophys. Quantum Electron., 56, Nos. 8–9, 599–609 (2014). https://doi.org/10.1007/s11141-014-9464-2

    Article  ADS  Google Scholar 

  7. G.Yu.Golubyatnikov, S. P. Belov, and I. I.Leonov, Radiophys. Quantum Electron., 58, No. 8, 622–631 (2015). https://doi.org/10.1007/s11141-016-9634-5

    Article  ADS  Google Scholar 

  8. S.P. Belov, G.Yu.Golubiatnikov, A.V. Lapinov, et al., J. Chem. Phys., 145, No. 2, 024307 (2016). https://doi.org/10.1063/1.4954941

    Article  ADS  Google Scholar 

  9. L.-H.Xu, J. T.Hougen, G.Yu. Golubiatnikov, et al., J. Mol. Spectrosc., 357, 11–23 (2019). https://doi.org/10.1016/j.jms.2018.12.003

    Article  ADS  Google Scholar 

  10. G. Cazzoli and L.Dore, J. Mol. Spectrosc., 141, 49–58 (1990). https://doi.org/10.1016/0022-2852(90)90277-W

    Article  ADS  Google Scholar 

  11. G. Winnewisser, S.P. Belov, Th.Klaus, and R. Schieder, J. Mol. Spectrosc., 184, 468–472 (1997). https://doi.org/10.1006/jmsp.1997.7341

    Article  ADS  Google Scholar 

  12. G.Yu.Golubiatnikov, A.V. Lapinov, A. Guarnieri, and R.Knöchel, J. Mol. Spectrosc., 234, 190–194 (2005). https://doi.org/10.1016/j.jms.2005.08.012

    Article  ADS  Google Scholar 

  13. E.A.Alekseev, V.V. Ilyushin, and A.A.Meshcheryakov, Radiophys. Radioastr ., 19, No. 4, 364–374 (2014). 10.15407/rpra19.04.364

  14. L.-H.Xu, E. M.Reid, B.Guislain, et al., J. Mol. Spectrosc., 342, 116–124 (2017). https://doi.org/10.1016/j.jms.2017.06.008

  15. J. Lamb, Optical Study for ALMA Receivers. ALMA Memo 359, North American ALMA Science Center, Charlottesville (2001).

  16. I. Lapkin, O.Nyström, V. Desmaris, et al., in: Proc. 19th Int. Symp. Space Terahertz Technology, April 28–30, 2008, Groningen, Netherlands, P. 351–357.

  17. O. Nyström, I. Lapkin, V.Desmaris, et al., J. Infrared Millim. Terahertz Waves, 30, 746–761 (2009). https://doi.org/10.1007/s10762-009-9493-7

    Article  Google Scholar 

  18. Goldsmith P. F., in: K. J. Button, ed., Infrared and Millimeter Waves, Vol.6, Academic Press, New York (1982), p. 277–344.

    Google Scholar 

  19. P. F. Goldsmith, Quasioptical Systems: Gaussian Beam Quasioptical Propagation and Applications, IEEE Press, New York (1998).

    Book  Google Scholar 

  20. O. Svelto, Principles of Lasers, Plenum, New York (1989).

    Google Scholar 

  21. T.-S.Chu, IEEE Trans. Antennas Propag., AP-31, No. 4, 614–619 (1983). https://doi.org/10.1109/TAP.1983.1143090

  22. G.-Q.Wang and S.-C. Shi, in: Proc. Global Symp. Millimeter Waves, April 21–24, 2008, Nanjing, China, 4534598. https://doi.org/10.1109/GSMM.2008.4534598

  23. A. W. Love, Microwave J ., 5, 117–122 (1962).

  24. J. F. Johansson, N.Whyborn, P.R.Acharya, et al., in: Proc. 2nd Int. Symp. Space Terahertz Tech., February 26–28, 1991, Pasadena, USA, pp. 63–69.

  25. S. Withington and J.A.Murphy, IEEE Trans. Antennas Propag., 40, 198–206 (1992). https://doi.org/10.1109/8.127404

    Article  ADS  Google Scholar 

  26. G. Cazzoli and C.Puzzarini, J. Mol. Spectrosc., 240, 153–163 (2006). https://doi.org/10.1016/j.jms.2006.09.013

    Article  ADS  Google Scholar 

  27. J. Emsley, The Elements, Clarendon Press, London (1991).

    Google Scholar 

  28. A.V. Lapinov, G.Yu.Golubiatnikov, V.N. Markov, and A. Guarnieri, Astron. Lett., 33, No. 2, 121–129 (2007). https://doi.org/10.1134/S1063773707020065

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lapinov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 12, pp. 971–982, December 2021. Russian DOI: https://doi.org/10.52452/00213462_2021_64_12_971

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, R., Lapkin, I.V., Lapinov, A.V. et al. Quasi-Optical Sub-Doppler Lamb-Dip Spectrometer. Radiophys Quantum El 64, 873–883 (2022). https://doi.org/10.1007/s11141-022-10185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10185-0

Navigation