Skip to main content
Log in

Frequency Locking and Stabilization Regimes in High-Power Gyrotrons with Low-Q Resonators

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Using a nonstationary self-consistent model, we analyze the frequency locking and stabilization regimes arising in gyrotrons with low-Q resonators under the action of an external signal or when reflections from a remote nonresonant load are introduced. In the simulations, we used the parameters of high-power gyrotrons designed for controlled thermonuclear fusion with optimized resonator profile. This approach makes it possible to determine output characteristics of the gyrotrons operated in considered regimes taking into account the effect of the incident wave (external or reflected) on the longitudinal field structure with greater precision compared with the earlier results based on the fixed RF-field structure approximation, while qualitative results of the two approaches coincide. Analysis of the effect of reflections from a remote load has demonstrated a substantial dependence of the efficiency of the gyrotron frequency stabilization on the ratio between the characteristic time scale of the synchronism detuning fluctuations and the signal delay time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. G. Denisov, V. E. Zapevalov, A.G. Litvak, and V. E.Myasnikov, Radiophys. Quantum Electron., 46, No. 10, 757 (2003).

    Article  ADS  Google Scholar 

  2. G. G. Denisov, A.G. Litvak, V. E.Myasnikov, et al., Nuclear Fusion, 48, No. 5, 054015 (2008).

    Article  ADS  Google Scholar 

  3. M. Thumm, IEEE Trans. on Plasma Sci., 42, No. 3, 590 (2014).

    Article  ADS  Google Scholar 

  4. V. E.Myasnikov, M. V. Agapova, A. N.Kuftin, et al., in: Proc. 38th Int. Conf. Infrared, Millimeter and Terahertz Waves (IRMMW-Thz 2013), Mainz on the Rhine, Germany, September 01–06, 2013, TU1-6.

  5. G. G. Denisov, in: Proc. 9th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod, July 24–30, 2014, p.7.

  6. V. S.Ergakov, M.A.Moiseev, and V. I.Khizhnyak, Radiotekh. ´ Elektron., 23, No. 12, 259 (1978).

  7. A. W. Fliflet and W.M.Manheimer, Phys. Rev. A, 39, No. 7, 3432 (1989).

    Article  ADS  Google Scholar 

  8. V. L.Bakunin, G.G.Denisov, and Yu.V.Novozhilova, Tech. Phys. Lett., 40, No. 5, 382 (2014).

    Article  ADS  Google Scholar 

  9. N.M. Ryskin and K.M.Yakunina, in: Proc. 9th Int. Workshop Strong Microwaves and Terahertz Waves: Sources and Applications, Nizhny Novgorod, July 24–30, 2014, p. 141.

  10. V. L. Bratman, M. A, Moiseev, M. I.Petelin, and R. ´E. ´Erm, Radiophys. Quantum Electron., 16, No. 4, 474 (1975).

  11. N. S. Ginzburg, N. A. Zavolsky, G. S.Nusinovich, and A. S. Sergeev, Radiophys. Quantum Electron., 29, No. 1, 89 (1986).

    Article  ADS  Google Scholar 

  12. N. S.Ginzburg, G. S.Nusinovich, and N.A. Zavolsky, Int. J. Electron., 61, No. 6, 881 (1986).

    Article  Google Scholar 

  13. N. A. Zavolsky, V. E. Zapevalov, and M. A. Moiseev, Radiophys. Quantum Electron., 49, No. 4, 275 (2006).

    Article  ADS  Google Scholar 

  14. O.Dumbrajs and G. S.Nusinovich, Phys. Plasmas, 12, No. 5, 053106 (2005).

    Article  ADS  Google Scholar 

  15. N. S.Ginzburg, A. S. Sergeev, I.V. Zotova, and I.V. Zheleznov, Phys. Plasmas, 22, 013112 (2015).

    Article  ADS  Google Scholar 

  16. N. S.Ginzburg, A. S. Sergeev, and I.V. Zotova, Phys. Plasmas, 22, 033101 (2015).

    Article  ADS  Google Scholar 

  17. M.Yu.Glyavin, G.G. Denisov, M. L.Kulygin, and Yu.V.Novozhilova, Tech. Phys. Lett., 41, No. 7, 628 (2015).

    Article  ADS  Google Scholar 

  18. P. S. Landa, Nonlinear Oscillations and Waves [in Russian], Nauka, Moscow (1997).

    Google Scholar 

  19. V. N. Dulin, Electron and Quantum Microwave Devices [in Russian], ´Energiya, Moscow (1972).

  20. R. Adler, Proc. Inst. Radio Eng., 34, 351 (1946).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Zotova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 58, No. 9, pp. 759–769, September 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotova, I.V., Ginzburg, N.S., Denisov, G.G. et al. Frequency Locking and Stabilization Regimes in High-Power Gyrotrons with Low-Q Resonators. Radiophys Quantum El 58, 684–693 (2016). https://doi.org/10.1007/s11141-016-9640-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-016-9640-7

Keywords

Navigation