Skip to main content
Log in

Non-Linear Resonances and Chaotic Dynamics of a Rotating Gyroscope Under a Fractional Order Derivative Damping

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

This paper deals with the action of the fractional order derivative on nonlinear resonances and its analysis on the chaotic dynamics of an excited rotating gyroscope has been investigated. After the mathematical modeling of the system, we determined the possible resonances of the system using the method of multiple scales. The stability conditions for each resonance were obtained using the Routh-Hurwitz criterion. The different system parameters have been studied and it is concluded that the different resonance states can be controlled by each of the system parameters. Moreover, using bifurcation diagrams, Lyapunov exponents, phase portraits and time series, it was shown that for certain values of the parameters the considered gyroscope exhibits several rich dynamics. The chaos has been reduced, even eliminated with the progressive increase of the other parameters, in particular of the order \( \mu \) of the fractional derivative up to a certain value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Data Availibility Statement

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Ge, Z.M., Chen, H.K., Chen, H.H.: The regular and chaotic motions of a symmetric heavy gyroscope with harmonic excitation. J. Sound Vib. 198(2), 131–147 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ge, Z.M.G.Z.M., Chen, H.K.C.H.K.: Stability and chaotic motions of a symmetric heavy gyroscope. Jpn. J. Appl. Phys. 35(3), 1954–1965 (1996)

  3. Asokanthan, S.F., Wang, T.: Nonlinear instabilities in a vibratory gyroscope subjected to angular speed fluctuations. Nonlinear Dyn. 54, 69–78 (2008)

    Article  Google Scholar 

  4. Dooren, R.V.: Comments on Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping. J. Sound Vib. 268, 632–634 (2003)

    Article  ADS  Google Scholar 

  5. Ge, Z.-M., Chen, H.-H.: Bifurcations and chaos in a rate gyro with harmonic excitation. J. Sound Vib. 194(1), 107–117 (1996)

    Article  ADS  Google Scholar 

  6. Lei, Y., Xu, W., Zheng, H.: Synchronization of two chaotic nonlinear gyros using active control. Phys. Let. A. 343, 153–158 (2005)

    Article  ADS  Google Scholar 

  7. Polo, M.F.P., Molina, M.P.: A generalized mathematical model to analyze the nonlinear behavior of a controlled gyroscope in gimbals. Nonlinear Dyn. 48, 129–152 (2007)

    Article  MathSciNet  Google Scholar 

  8. Chen, H.-K.: Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping. J. Sound Vib. 255(4), 719–740 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. Min, F.H.: Generalized projective synchronization between two chaotic gyros with nonlinear damping. Chin. Phys. B 20(10), Article ID 100503 (2011)

  10. Iskakov, Z., Bissembayev, K.: The nonlinear vibrations of a vertical hard gyroscopic rotor with nonlinear characteristics. Mech. Sci. 10(2), 529–544 (2019)

    Article  Google Scholar 

  11. Aghababa, M.P., Aghababa, H.P.: Chaos suppression of uncertain gyros in a given finite time. Chin. Phys. B. 21, 110505 (2013)

    Article  Google Scholar 

  12. Roopaei, M., Jahromi, M.Z., John, R., Lin, T.C.: Unknown nonlinear chaotic gyros synchronization using adaptive fuzzy sliding mode control with unknown dead-zone input. Commun. Nonlinear Sci. Numer. Simulat. 12, 2536–2545 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  13. Scheurich, B., Koch, T., Frey, M., Gauterin, F.: A gyroscopic damper system-damping with new characteristics. 23rd Aachen Col-loquium Automobile and Engine Technology, 365–378 (2014)

  14. Tong, X., Mrad, N.: Chaotic motion of a symmetric gyro subjected to a harmonic base excitation. J. Appl. Mech. 68(4), 681–684 (2001)

    Article  ADS  Google Scholar 

  15. Miwadinou, C.H., Monwanou, A.V., Hinvi, L.A., Tamba, V.K., Koukpémèdji, A.A., Chabi Orou, J.B.: Nonlinear oscillations of nonlinear damping gyros: resonances, hysteresis and multistability. Int. J. Bifurcation Chaos 30(14), Article ID 2050203 (2020)

  16. Enjieu Kadji, H.G., Nana Nbendjo, B.R., Chabi Orou, J.B., Talla, P.K.: Nonlinear dynamics of plasma oscillations modeled by an anharmonic oscillator. Phys. Plasmas 15, 032308 (2008)

    Article  ADS  Google Scholar 

  17. Miwadinou, C.H., Hinvi, L.A., Monwanouv, A.V., Chabi Orou, J.B.: Nonlinear Dynamics of a \( \phi ^6\)- Modified Rayleigh-Duffing Oscillator : Resonant Oscillations and Homoclinic Bifurcation. Nonlinear Dyn. 88, 97–113 (2017)

    Article  Google Scholar 

  18. Siewe Siewe, M., Moukam Kakmeni, F.M., Tchawoua, C.: Resonant oscillation and homoclinic bifurcation in a \( \phi ^6\) -Van der Pol oscillatorv. Chaos Soliton Fract. 21, 841–853 (2004)

    Article  ADS  Google Scholar 

  19. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–199 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  20. Oyeleke, K.S., Olusola, O.I., Vincent, U.E., Ghosh, D., McClintock, P.V.E.: Parametric vibrational resonance in a gyroscope driven by dual-frequency forces. Phys. Lett. A 387, Article ID 127040 (2021)

  21. Iskakov, Z.: Simulation of non-linear characteristics influence dynamic on vertical rigid gyro rotor resonant oscillations. CBU Int. Conf. Proc. 6, 1094–1100 (2018)

    Article  Google Scholar 

  22. Dozounhékpon, H.F., Koukpémédji, A.A., Monwanou, A.V., Miwadinou, C.H., Hinvi, L.A., Chabi Orou, J.B.: Non- linear dynamics of the oscillations of the plant in a vegetation cover situation under the effects of the wind. Eur. Phys. J. B 95(2), 22–14 (2022)

    Article  ADS  Google Scholar 

  23. Siewe Siewe, M., Moukam Kakmeni, F.M., Tchawoua, C., Woafo, P.: Nonlinear response and suppression of chaos by weak harmonic perturbation inside a triple well \( \Phi ^6 \) -Rayleigh oscillator combined to parametric excitations. J. Comput. Nonlinear Dyn. 1(3), 196–204 (2006)

    Article  Google Scholar 

  24. Wang, R.G., Chen, Y., Cai, G.W.: Subharmonic resonance analysis of a 2-DOF controllable linkage mechanism system affected by self-excited inertial force. Adv. Mater. Res. 139–141, 2381–2385 (2010)

    Article  Google Scholar 

  25. Yang, J.H., Zhu, H.: Vibrational resonance in Duffing systems with fractional-order damping. Chaos Interdiscip. J. Nonlinear Sci. 22, 013112 (2012). https://doi.org/10.1063/1.3678788

    Article  MathSciNet  Google Scholar 

  26. Roy-Layinde, T.O., Laoye, J.A., Popoola, O.O., Vincent, U.E.: Analysis of Vibrational Resonance in Bi-harmonically Driven Plasma. Plasma (2016)

  27. Aghababa, M.P., Aghababa, H.P.: The rich dynamics of fractional-order gyros applying a fractional controller. J. Syst. Control Eng. 227, 588–601 (2013)

    Google Scholar 

  28. Nwagoum tuwa, P.R., Miwadinou, C.H., Monwanou, A.V., Chabi orou, J.B., Woafo, P.: Chaotic vibrations of nonlinear viscoelastic plate with fractional derivative model and subjected to parametric and external excitations. Mechanics Research Communications. https://doi.org/10.1016/j.mechrescom.2019.04.001

  29. Nwagoum Tuwa, P.R., Molla, T., Noubissie, S., Kingni, S.T., Rajagopal, K.: Analysis of a quarter car suspension based on a Kelvin-Voigt viscoelastic model with fractional-order derivative. Int. J. Non-Linear Mech. 137, 103818 (2021)

    Article  ADS  Google Scholar 

  30. Awrejcewicz, J., Starosta, R., Sypniewska-Kamińska, G.: Complexity of resonances exhibited by a nonlinear micromechanical gyroscope: an analytical study. Nonlinear Dyn. 97, 1819–1836 (2019)

    Article  Google Scholar 

Download references

Funding

We have not funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally.

Corresponding author

Correspondence to C. H. Miwadinou.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hounnan, S.O., Tuwa, P.R.N., Miwadinou, C.H. et al. Non-Linear Resonances and Chaotic Dynamics of a Rotating Gyroscope Under a Fractional Order Derivative Damping. Int J Theor Phys 63, 89 (2024). https://doi.org/10.1007/s10773-024-05620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05620-z

Keywords

Navigation