Skip to main content
Log in

Tandem fluid queue with long-range dependent inputs: sticky behaviour and heavy traffic approximation

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

Empirical studies have shown that traffic in communication networks exhibits long-range dependence. Cumulative network traffic is often thought to be well modelled by a fractional Brownian motion (fBm). FBm approximations of queueing systems have also been well justified by theoretical results, and most of this achievements are based on one Hurst parameter. However, just as pointed out by Konstantopoulos and Lin (in: Glasserman, Sigman, and Yao (eds) Stochastic Networks: Stability and Rare Events. Lecture Notes in Statistics, Springer-Verlag, New York, 1996), various Hurst parameters may be more appropriate. At the same time, sticky Brownian motions on the half-line have many applications in queueing theory, and could be obtained as heavy traffic limits of queueing systems with exceptional service (arrive) mechanisms. In this paper, reflected operator fractional Brownian motion, sticky operator fractional Brownian motion, and a d-node tandem fluid queue with long-range dependent inputs and sticky boundaries are constructed. Moreover, in heavy traffic environment, it is shown that the scaled buffer-content process of the d-node tandem queue converges weakly to a sticky operator Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Amir, M.: Sticky Brownian motion as the strong limit of a sequence of random walks. Stoch. Process. Appl. 39, 221–237 (1991)

    Article  Google Scholar 

  2. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, Hoboken (1999)

    Book  Google Scholar 

  3. Boniece, B.C., Didier, G.: On operator fractional Lévy motion: Integral representations and time reversibility. Appl. Probab., to appear, Adv (2021)

  4. Bramson, M., Dai, J.G.: Heavy traffic limits for some queueing networks. Ann. Appl. Probab. 11, 49–88 (2001)

    Google Scholar 

  5. Bernard, A., Kharroubi, A.: Régulations déterministes et stochastiques dans le premier orthant de \({\mathbb{R}}^n\). Stoch. Stoch. Rep. 34, 149–167 (1991)

    Article  Google Scholar 

  6. Dai, H.S.: Convergence in law to operator fractional Brownian motions. J. Theor. Probab. 26(3), 676–696 (2013)

    Article  Google Scholar 

  7. Dai, W.Y.: Heavy traffic limit theorems for a queue with Poisson on/off long-range dependent sources and general service time distribution. Acta Math. Appl. Sinica 4, 807–822 (2012)

    Article  Google Scholar 

  8. Delgado, R.: A reflected fbm limit for fluid models with on/off sources under heavy traffic. Stoch. Process. Appl. 117(2), 188–201 (2007)

    Article  Google Scholar 

  9. Debicki, K., Mandjes, M.: Traffic with an fBm limit: convergence of the stationary workload process. Queueing Syst. 46, 113–127 (2004)

    Article  Google Scholar 

  10. Didier, G., Meerschaert, M.M., Pipiras, V.: Domain and range symmetries of operator fractional Brownian fields. Stoch. Process. Appl. 128(1), 39–78 (2018)

    Article  Google Scholar 

  11. Debicki, K., Palmowski, Z.: On-off fluid models in heavy traffic environment. Queueing Syst. 33, 327–338 (1999)

    Article  Google Scholar 

  12. Didier, G., Pipiras, V.: Integral representations and properties of operator fractional Brownian motions. Bernoulli 17(1), 1–33 (2011)

    Article  Google Scholar 

  13. Didier, G., Pipiras, V.: Exponents, symmetry groups and classification of operator fractional Brownian motions. J. Theor. Probab. 25, 353–395 (2012)

    Article  Google Scholar 

  14. D’Auria, B., Samorodnitsky, G.: Limit behaviour of fluid queues and networks. Oper. Res. 53(6), 933–945 (2005)

    Article  Google Scholar 

  15. Dai, H.S., Zhao, Y.Q.: Stationary distributions for two-dimensional sticky Brownian motions: exact tail asymptotics and extreme value distributions. Sci. China Math. 64, 2539–2562 (2021)

    Article  Google Scholar 

  16. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, Hoboken (1986)

    Book  Google Scholar 

  17. Feller, W.: Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77, 1–31 (1954)

    Article  Google Scholar 

  18. Gamarnik, G., Zeevi, A.: Validity of heavy traffic steady-state approximation in generalized Jackson networks. Ann. Appl. Probab. 16, 56–90 (2006)

    Article  Google Scholar 

  19. Harrison, J.M., Lemoine, A.J.: Sticky Brownian motion as the limit of storage processes. J. Appl. Probab. 18, 216–226 (1981)

    Article  Google Scholar 

  20. Itô, K., McKean, H.P.: Brownian motions on a half line. Illinois J. Math. 7, 181–231 (1963)

    Article  Google Scholar 

  21. Iglehart, D.L., Whitt, W.: Multiple channel queues in heavy traffic I. Adv. Appl. Probab. 2, 150–177 (1970)

    Article  Google Scholar 

  22. Jackson, J.R.: Networks of waiting lines. Operation Res. 5, 518–521 (1957)

    Article  Google Scholar 

  23. Konstantopoulos, T.: The Skorohod reflection problem for functions with discontinuities (contractive case). Technical Report, ECE Department, University of Texas at Austin (2000)

  24. Kingman, J.F.C.: On queues in heavy traffic. Proc. Camb. Phil. Soc. 57, 902–904 (1961)

    Article  Google Scholar 

  25. Konstantopoulos, T., Lin, S.J.: Fractional Brownian approximations of queueing networks. In: Glasserman, P., Sigman, K., Yao, D. (eds.) Stochastic Networks: Stability and Rare Events. Lecture Notes in Statistics, vol. 117, pp. 257–274. Springer-Verlag, New York (1996)

    Chapter  Google Scholar 

  26. Konstantopoulos, T., Lin, S.J.: On a class of Lévy stochastic networks. Queueing Syst. 46, 409–437 (2004)

    Article  Google Scholar 

  27. Kilpi, J., Norros, I.: Testing the Gaussian approximation of aggregate traffic. In: 2nd ACM SIGCOMM Internet Measurement Workshop, P. 49–61 (2002)

  28. Lemoine, A.J.: Limit theorems for generalized single server queues. Adv. Appl. Probab. 6, 159–174 (1974)

    Article  Google Scholar 

  29. Lemoine, A.J.: Limit theorems for generalized single server queues: the exceptional system. SIAM J. Appl. Math. 28, 596–606 (1975)

    Article  Google Scholar 

  30. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of Ethernet traffic. IEEE/ACM Trans. Netw. 2, 1–15 (1994)

    Article  Google Scholar 

  31. Lee, C., Weerasinghe, A.: Stationarity and control of a tandem fluid network with fractional Brownian motion input. Adv. Appl. Probab. 43(3), 847–874 (2011)

    Article  Google Scholar 

  32. Mandjes, M.: Queueing networks with Gaussian inputs. In: Boucherie, R., van Dijk, N. (eds), Queueing Networks. International Series in Operations Research and Management Science, 154, 531-560, Springer, Boston (2011)

  33. Majewski, K.: Fractional Brownian heavy traffic approximations of multi-class feedforward queueing networks. Queueing Syst. 50, 199–230 (2005)

    Article  Google Scholar 

  34. Miyazawa, M.: Diffusion approximation for stationary analysis of queues and their networks: a review. J. Operations Res. Soc. Japan 58, 104–148 (2015)

    Article  Google Scholar 

  35. Maejima, M., Mason, J.D.: Operator-self-similar stable processes. Stoch. Process. Appl. 54(1), 139–163 (1994)

    Article  Google Scholar 

  36. Mannersalo, P., Norros, I.: A most probable path approach to queueing systems with general Gaussian input. Comput. Netw. 40, 399–412 (2002)

    Article  Google Scholar 

  37. Mikosch, T., Resnick, S., Stegeman, H.R.: Is network traffic approximated by stable Lévy motion or fractional Brownian motion? Ann. Appl. Probab. 12, 23–68 (2002)

    Article  Google Scholar 

  38. Massoulie, L., Simonian, A.: Large buffer asymptotics for the queue with fractional Brownian input. J. Appl. Prob. 36, 894–906 (1999)

    Article  Google Scholar 

  39. Meerschaert, M.M., Scheffler, H.P.: Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Wiley, Hoboken (2001)

    Google Scholar 

  40. Mandjes, M., van Uitert, M.: Sample-path large deviations for tandem and priority queues with Gaussian inputs. Ann. Appl. Probab. 15(2), 1193–1226 (2005)

    Article  Google Scholar 

  41. Mason, J.D., Xiao, Y.M.: Sample path properties of operator-slef-similar Gaussian random fields. Theory Probab. Appl. 46, 94–116 (2001)

    Google Scholar 

  42. Norros, I.: A storage model with self-similar input. Queueing Syst. 16, 387–396 (1994)

    Article  Google Scholar 

  43. Rácz, M.Z., Shkolnikov, M.: Multidimensional sticky Brownian motions as limits of exclusion processes. Ann. Appl. Probab. 25(3), 1155–1188 (2015)

    Article  Google Scholar 

  44. Welch, P.D.: On a generalized M/G/1 queuing process in which the first customer of each busy period receives exceptional service. Operation Res. 12, 736–752 (1964)

    Article  Google Scholar 

  45. Williams, R.J.: An invariance principle for semimartingale reflecting Brownian motions in an orthant. Queueing Syst. 30, 5–25 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anonymous reviewers for providing constructive comments/suggestions, which have significantly improved the quality of this paper. We also would like to thank Prof. Yiqiang, Q. Zhao, Carleton University, for stimulating discussions. This work was supported by Shandong Provincial Natural Science Foundation (Nos. ZR2019MA035 and ZR2020MA036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongshuai Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, H. Tandem fluid queue with long-range dependent inputs: sticky behaviour and heavy traffic approximation. Queueing Syst 101, 165–196 (2022). https://doi.org/10.1007/s11134-022-09798-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-022-09798-z

Keywords

Mathematics Subject Classification

Navigation