Skip to main content
Log in

Exponents, Symmetry Groups and Classification of Operator Fractional Brownian Motions

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Operator fractional Brownian motions (OFBMs) are zero mean, operator self-similar (o.s.s.) Gaussian processes with stationary increments. They generalize univariate fractional Brownian motions to the multivariate context. It is well-known that the so-called symmetry group of an o.s.s. process is conjugate to subgroups of the orthogonal group. Moreover, by a celebrated result of Hudson and Mason, the set of all exponents of an operator self-similar process can be related to the tangent space of its symmetry group.

In this paper, we revisit and study both the symmetry groups and exponent sets for the class of OFBMs based on their spectral domain integral representations. A general description of the symmetry groups of OFBMs in terms of subsets of centralizers of the spectral domain parameters is provided. OFBMs with symmetry groups of maximal and minimal types are studied in any dimension. In particular, it is shown that OFBMs have minimal symmetry groups (and thus unique exponents) in general, in the topological sense. Finer classification results of OFBMs, based on the explicit construction of their symmetry groups, are given in the lower dimensions 2 and 3. It is also shown that the parametrization of spectral domain integral representations are, in a suitable sense, not affected by multiplicity of exponents, whereas the same is not true for time domain integral representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahadoran, C., Benassi, A., Dȩbicki, K.: Operator-self-similar Gaussian processes with stationary increments. Preprint (2003). Available at http://math.univ-bpclermont.fr/prepublications/2003/2003-03.ps

  2. Becker-Kern, P., Pap, G.: Parameter estimation of selfsimilarity exponents. J. Multivar. Anal. 99, 117–140 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Billingsley, P.: Convergence of types in k-spaces. Z. Wahrscheinlichkeitstheor. Verw. Geb. 5, 175–179 (1966)

    Article  MathSciNet  Google Scholar 

  4. Bingham, N., Goldie, C., Teugels, J.: Regular Variation. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  5. Didier, G.: Studies in Stochastic Processes: Adaptive Wavelet Decompositions and Operator Fractional Brownian Motions. PhD thesis, University of North Carolina at Chapel Hill, Chapel Hill, NC (2007)

  6. Didier, G., Pipiras, V.: Integral representations and properties of operator fractional Brownian motions. Bernoulli 17(1), 1–33 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Embrechts, P., Maejima, M.: Selfsimilar Processes. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  8. Gantmacher, F.R.: The Theory of Matrices, vol. 1. AMS Chelsea Publishing, Providence (1959). Translated from the Russian by K.A. Hirsch, Reprint of the 1959 translation

    MATH  Google Scholar 

  9. Hausner, M., Schwartz, J.: Lie Groups; Lie Algebras. Notes on Mathematics and its Applications. Gordon and Breach, New York (1968)

    MATH  Google Scholar 

  10. Hoffman, K.H., Morris, S.A.: The Structure of Compact Groups. de Gruyter, Berlin (1998)

    Google Scholar 

  11. Hudson, W., Mason, J.: Operator-stable laws. J. Multivar. Anal. 11(3), 434–447 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hudson, W., Mason, J.: Operator-self-similar processes in a finite-dimensional space. Trans. Am. Math. Soc. 273(1), 281–297 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jurek, Z., Mason, J.: Operator-Limit Distributions in Probability Theory. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1993)

    MATH  Google Scholar 

  14. Laha, R.G., Rohatgi, V.K.: Operator self-similar stochastic processes in R d. Stoch. Process. Appl. 12(1), 73–84 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lavancier, F., Philippe, A., Surgailis, D.: Covariance function of vector self-similar processes. Stat. Probab. Lett. 79, 2415–2421 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lax, P.: Linear Algebra and its Applications. Wiley, New York (2007)

    MATH  Google Scholar 

  17. Liao, M.: Symmetry groups of Markov processes. Ann. Probab. 20(2), 563–578 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. MacDuffee, C.C.: The Theory of Matrices. Chelsea, New York (1946)

    Google Scholar 

  19. Maejima, M.: Limit theorems related to a class of operator-self-similar processes. Nagoya J. Math. 142, 161–181 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Maejima, M.: Norming operators for operator self-similar processes. In: Stochastic Processes and Related Topics. Trends Math., pp. 287–295. Birkhäuser, Boston (1998)

    Chapter  Google Scholar 

  21. Maejima, M., Mason, J.: Operator-self-similar stable processes. Stoch. Process. Appl. 54, 139–163 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mason, J., Xiao, Y.: Sample path properties of operator-self-similar Gaussian random fields. Theory Probab. Appl. 46(1), 58–78 (2002)

    Article  MathSciNet  Google Scholar 

  23. Meerschaert, M., Scheffler, H.-P.: Spectral decomposition for operator self-similar processes and their generalized domains of attraction. Stoch. Process. Appl. 84, 71–80 (1999)

    Article  MathSciNet  Google Scholar 

  24. Meerschaert, M.M., Scheffler, H.-P.: Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice. Wiley Series in Probability and Statistics. Wiley, New York (2001)

    MATH  Google Scholar 

  25. Meerschaert, M., Veeh, J.: The structure of the exponents and symmetries of an operator stable measure. J. Theor. Probab. 4, 713–726 (1993)

    Article  MathSciNet  Google Scholar 

  26. Meerschaert, M., Veeh, J.: Symmetry groups in d-space. Stat. Probab. Lett. 1, 1–6 (1995)

    Article  MathSciNet  Google Scholar 

  27. Pitt, L.D.: Scaling limits of Gaussian vectors fields. J. Multivar. Anal. 8, 45–54 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  28. Sato, K.: Self-similar processes with independent increments. Probab. Theory Relat. Fields 89, 285–300 (1991)

    Article  MATH  Google Scholar 

  29. Sharpe, M.: Operator-stable probability distributions on vector groups. Trans. Am. Math. Soc. 136(2), 51–65 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  30. Suprunenko, D.A., Tyshkevich, R.I.: Commutative Matrices. Academic Press, New York (1968)

    Google Scholar 

  31. Taussky, O.: Commutativity in finite matrices. Am. Math. Mon. 64(4), 229–235 (1953)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Didier.

Additional information

The first author was supported in part by the Louisiana Board of Regents award LEQSF(2008-11)-RD-A-23. The second author was supported in part by the NSF grants DMS-0505628 and DMS-0608669.

The authors are thankful to Profs. Eric Renault and Murad Taqqu for their comments on this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didier, G., Pipiras, V. Exponents, Symmetry Groups and Classification of Operator Fractional Brownian Motions. J Theor Probab 25, 353–395 (2012). https://doi.org/10.1007/s10959-011-0348-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-011-0348-5

Keywords

Mathematics Subject Classification (2000)

Navigation