Skip to main content
Log in

Evaluation of a Novel Phosphorylated Red Dragon Fruit Peel Pectin for Enhancement of Thermal Stability and Functional Activity

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Red dragon fruit peel, as a fruit waste, is rich in plant-based nutritional pectins that can be applied as food additives. The present study aims to characterize a novel phosphorylated red dragon fruit peel pectin (PRDFP-P) and to explore its functional activities. The thermal analysis, morphology analysis, antibacterial, antioxidant and antitumor activities of PRDFP-P were evaluated. The results showed that the phosphorylated derivative PRDFP-P had typical phosphate groups. Compared with the native red dragon fruit peel pectin (PRDFP), PRDFP-P possessed superior thermal stability and exhibited significant inhibition effects on Escherichia coli and Staphylococcus aureus. Moreover, the phosphate groups on the derivative PRDFP-P chains remarkably enhanced the scavenging ability of hydroxyl radicals and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals. In addition, PRDFP-P showed a significant inhibition effect on growth of human hepatic carcinoma cells (HepG2) and the IC50 value was determined to be 248.69 μg/mL (P < 0.05). Our results suggested that the phosphorylated derivative PRDFP-P might be potentially applied as stabilizing, thickening and gelling agents with functional activities in the food industry.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data from the current study are available from the corresponding author on reasonable request.

References

  1. Picot-Allain MCN, Amiri-Rigi A, Abdoun-Ouallouche K, Aberkane L, Djefal-Kerrar A, Mahomoodally MF, Emmambux MN (2022) Assessing the bioactivity, cytotoxicity, and rheological properties of pectin recovered from citrus peels. Food Biosci 46:101550. https://doi.org/10.1016/j.fbio.2022.101550

  2. Zhang T, Zhang H, Wei M, Zhu CH (2022) Effects of enzymatic treatment on the physicochemical properties and antioxidant activity of hawthorn pectin. Mater Today Commun 30:103225. https://doi.org/10.1016/j.mtcomm.2022.103225

    Article  CAS  Google Scholar 

  3. Hotchkiss AT, Chau HK, Strahan GD, Nuñez A, Simon S, White AK, Dieng SH, Heuberger ER, Yadav MP, Hirsch J (2022) Structural characterization of red beet fiber and pectin. Food Hydrocolloid 107549. https://doi.org/10.1016/j.foodhyd.2022.107549

  4. Wu DM, Chen SG, Ye XQ, Zheng XL, Ahmadi S, Hu WW, Yu CX, Cheng H, Linhardt RJ, Chen JL (2022) Enzyme-extracted raspberry pectin exhibits a high-branched structure and enhanced anti-inflammatory properties than hot acid-extracted pectin. Food Chem 383:132387. https://doi.org/10.1016/j.foodchem.2022.132387

    Article  CAS  PubMed  Google Scholar 

  5. Costa KPB, Reichembach LH, de Oliveira Petkowicz CL (2022) Pectins with commercial features and gelling ability from peels of Hylocereus spp. Food Hydrocolloid 107583. https://doi.org/10.1016/j.foodhyd.2022.107583

  6. Einhorn-Stoll U, Archut A, Eichhorn M, Kastner H (2021) Pectin - plant protein systems and their application. Food Hydrocolloid 118:106783. https://doi.org/10.1016/j.foodhyd.2021.106783

    Article  CAS  Google Scholar 

  7. Zhao Y, Li B, Li CC, Xu YF, Luo Y, Liang DW, Huang CX (2021) Comprehensive review of polysaccharide-based materials in edible packaging: a sustainable approach. Foods 10(8):1845. https://doi.org/10.3390/foods10081845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Angonese M, Motta GE, Silva de Farias N, Molognoni L, Daguer H, Brugnerotto P, de Oliveira Costa AC, Olivera Müller CM (2021) Organic dragon fruits (Hylocereus undatus and Hylocereus polyrhizus) grown at the same edaphoclimatic conditions: comparison of phenolic and organic acids profiles and antioxidant activities. LWT-Food Sci Technol 149:111924. https://doi.org/10.1016/j.lwt.2021.111924

    Article  CAS  Google Scholar 

  9. Han Y, Zhao M, Ouyang KH, Chen S, Zhang Y, Liu X, An Q, Zhao Z, Wang WJ (2021) Sulfated modification, structures, antioxidant activities and mechanism of Cyclocarya paliurus polysaccharides protecting dendritic cells against oxidant stress. Ind Crop Prod 164:113353. https://doi.org/10.1016/j.indcrop.2021.113353

    Article  CAS  Google Scholar 

  10. Zhou SY, Huang GL, Chen GY (2021) Extraction, structural analysis, derivatization and antioxidant activity of polysaccharide from Chinese yam. Food Chem 361:130089. https://doi.org/10.1016/j.foodchem.2021.130089

    Article  CAS  PubMed  Google Scholar 

  11. Chen L, Huang GL (2019) Antioxidant activities of phosphorylated pumpkin polysaccharide. Int J Biol Macromol 125:256–261. https://doi.org/10.1016/j.ijbiomac.2018.12.069

    Article  CAS  PubMed  Google Scholar 

  12. Yong YY, Dykes G, Lee SM, Choo WS (2017) Comparative study of betacyanin profile and antimicrobial activity of red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius). Plant Foods Hum Nutr 72(1):41–47. https://doi.org/10.1007/s11130-016-0586-x   

  13. Wang XM, Zhang ZS, Yao Q, Zhao MX, Qi HM (2013) Phosphorylation of low-molecular-weight polysaccharide from Enteromorpha linza with antioxidant activity. Carbohydr Polym 96:371–375. https://doi.org/10.1016/j.carbpol.2013.04.029

    Article  CAS  PubMed  Google Scholar 

  14. Govindan S, Jayabal A, Shanmugam J, Ramani P (2021) Antioxidant and hepatoprotective effects of Hypsizygus ulmarius polysaccharide on alcoholic liver injury in rats. Food Sci Hum Well 10:523–535. https://doi.org/10.1016/j.fshw.2021.04.015

    Article  Google Scholar 

  15. Rao MRP, Warrier DU, Gaikwad SR, Shevate PM (2021) Phosphorylation of psyllium seed polysaccharide and its characterization. Int J Biol Macromol 85:317–326. https://doi.org/10.1016/j.ijbiomac.2015.12.043

    Article  CAS  Google Scholar 

  16. Vanavil B, Selvaraj K, Aanandhalakshmi R, Usha Sri K, Arumugam M (2020) Bioactive and thermostable sulphated polysaccharide from Sargassum swartzii with drug delivery applications. Int J Biol Macromol 153:190–200. https://doi.org/10.1016/j.ijbiomac.2020.02.332

    Article  CAS  Google Scholar 

  17. Marcotullio G, Krisanti E, Giuntoli J, de Jong W (2011) Selective production of hemicellulose-derived carbohydrates from wheat straw using dilute HCl or FeCl3 solutions under mild conditions. X-ray and thermo-gravimetric analysis of the solid residues. Bioresour Technol 102:5917–5923. https://doi.org/10.1016/j.biortech.2011.02.092

    Article  CAS  PubMed  Google Scholar 

  18. Jayakumar R, Nagahama H, Furuike T, Tamura H (2008) Synthesis of phosphorylated chitosan by novel method and its characterization. Int J Biol Macromol 42(4):335–339. https://doi.org/10.1016/j.ijbiomac.2007.12.011

    Article  CAS  PubMed  Google Scholar 

  19. Rahayuningsih E, Setiawan FA, Rahman ABK, Siahaan T, Petrus HTBM (2021) Microencapsulation of betacyanin from red dragon fruit (Hylocereus polyrhizus) peels using pectin by simple coacervation to enhance stability. J Food Sci Tech 58(9):3379–3387. https://doi.org/10.1007/s13197-020-04910-8

    Article  CAS  Google Scholar 

  20. Wong YM, Siow LF (2015) Effects of heat, pH, antioxidant, agitation and light on betacyanin stability using red-fleshed dragon fruit (Hylocereus polyrhizus) juice and concentrate as models. J Food Sci Tech 52(5):3086–3092. https://doi.org/10.1007/s13197-014-1362-2

    Article  CAS  Google Scholar 

  21. Niu XK, Liu AQ, Liu CC, Zhang C, Low SS, Show PL (2021) Small laccase from Streptomyces coelicolor catalyzed chitosan–pectin blending film for hazardous gas removal. Environ Technol Inno 23:101690. https://doi.org/10.1016/j.eti.2021.101690

    Article  CAS  Google Scholar 

  22. Xia SL, Zhai YC, Wang X, Fan QR, Dong XY, Chen M, Han T (2021) Phosphorylation of polysaccharides: a review on the synthesis and bioactivities. Int J Biol Macromol 184:946–954. https://doi.org/10.1016/j.ijbiomac.2021.06.149

    Article  CAS  PubMed  Google Scholar 

  23. Song Y, Ni YY, Hu XS, Li QH (2015) Effect of phosphorylation on antioxidant activities of pumpkin (Cucurbita pepo, Lady godiva) polysaccharide. Int J Biol Macromol 81:41–48. https://doi.org/10.1016/j.ijbiomac.2015.07.055

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 31902127) and the Xiangyu Talents Project for Huaiyin Normal University (31QSQ00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiquan Qian.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, S., Sheng, Z., Meng, Q. et al. Evaluation of a Novel Phosphorylated Red Dragon Fruit Peel Pectin for Enhancement of Thermal Stability and Functional Activity. Plant Foods Hum Nutr 77, 150–154 (2022). https://doi.org/10.1007/s11130-022-00958-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-022-00958-3

Keywords

Navigation