Skip to main content
Log in

Multipartite quantum coherence and monogamy for Dirac fields subject to Hawking radiation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We study the quantum coherence of Greenberger–Horne–Zeilinger-like states of multi-mode Dirac fields in the background of a Schwarzschild black hole. We find that the evolutions of both \(l_1\)-norm of coherence and relative entropy of coherence are similar, though the two measures are not completely compatible. The accessible coherence always degrades monotonically by the Hawking effect, and the inaccessible coherence increases from zero monotonically or non-monotonically, depending on the ratio of the inaccessible to the accessible number of modes. Both the accessible and inaccessible coherences have the phenomenon of freeze. The monogamies for the \(l_1\)-norm of coherence between the accessible and inaccessible modes are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Leggett, A.J., Theor, Prog: Macroscopic quantum systems and the quantum theory of measurement. Phys. Suppl. 69, 80–100 (1980)

    MathSciNet  Google Scholar 

  2. Schumacher, B., Westmoreland, M.D.: Quantum privacy and quantum coherence. Phys. Rev. Lett. 80, 5695–5697 (1998)

    Article  ADS  Google Scholar 

  3. Barnes, S.E., Ballou, R., Barbara, B., Strelen, J.: Quantum coherence in small antiferromagnets. Phys. Rev. Lett. 79, 289–292 (1997)

    Article  ADS  Google Scholar 

  4. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: quantum coherence as a resource. Rev. Mod. Phys. 89(1–34), 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. Sharma, U.K., Chakrabarty, I., Shukla, M.K.: Broadcasting quantum coherence via cloning. Phys. Rev. A 96(1–9), 052319 (2017)

    Article  Google Scholar 

  6. Peng, Y., Jiang, Y., Fan, H.: Maximally coherent states and coherence-preserving operations. Phys. Rev. A 93(1–6), 032326 (2016)

    Article  ADS  Google Scholar 

  7. Brandão, F.G.S.L., Horodecki, M., Ng, N.H.Y., Oppenheim, J., Wehner, S.: The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. USA 112, 3275–3279 (2015)

    Article  ADS  Google Scholar 

  8. Horodecki, M., Oppenheim, J.: Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 4(1–6), 2059 (2013)

    Article  ADS  Google Scholar 

  9. Ćwikliński, P., Studziński, M., Horodecki, M., Oppenheim, J.: Limitations on the evolution of quantum coherences: towards fully quantum second laws of thermodynamics. Phys. Rev. Lett. 115(1–5), 210403 (2015)

    Article  ADS  Google Scholar 

  10. Huelga, S.F., Plenio, M.B.: A vibrant environment. Nat. Phys. 10, 621–622 (2014)

    Article  Google Scholar 

  11. Huelga, S.F., Plenio, M.B.: Vibrations, quanta and biology. Contemp. Phys. 54, 181–207 (2013)

    Article  ADS  Google Scholar 

  12. Gärttner, M., Hauke, P., Rey, A.M.: Relating out-of-time-order correlations to entanglement via multiple-quantum coherences. Phys. Rev. Lett. 120(1–6), 040402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(1–4), 140401 (2014)

    Article  ADS  Google Scholar 

  14. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115(1–6), 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: an operational and observable measure of quantum coherence. Phys. Rev. Lett. 116(1–6), 150502 (2016)

    Article  ADS  Google Scholar 

  16. Marvian, I., Spekken, R.W.: How to quantify coherence: distinguishing speakable and unspeakable notions. Phys. Rev. A 94(1–23), 052324 (2016)

    Article  ADS  Google Scholar 

  17. Yu, C.S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95(1–12), 042337 (2017)

    Article  ADS  Google Scholar 

  18. de Vicente, J.I., Streltsov, A.: Genuine quantum coherence. J. Phys. A: Math. Theor. 50(1–34), 045301 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  19. Bu, K., Anand, N., Singh, U.: Asymmetry and coherence weight of quantum states. Phys. Rev. A 97(1–10), 032342 (2018)

    Article  ADS  Google Scholar 

  20. Fuentes-Schuller, I., Mann, R.B.: Alice falls into a black hole: entanglement in noninertial frames. Phys. Rev. Lett. 95(1–4), 120404 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A 74(1–15), 032326 (2006)

    Article  ADS  Google Scholar 

  22. Aspachs, M., Adesso, G., Fuentes, I.: Optimal quantum estimation of the Unruh–Hawking effect. Phys. Rev. Lett. 105(1–4), 151301 (2010)

    Article  ADS  Google Scholar 

  23. Martín-Martínez, E., Fuentes, I.: Redistribution of particle and antiparticle entanglement in noninertial frames. Phys. Rev. A 83(1–9), 052306 (2011)

    Article  ADS  Google Scholar 

  24. Tian, Z., Jing, J., Dragan, A.: Analog cosmological particle generation in a superconducting circuit. Phys. Rev. D 95(1–5), 125003 (2017)

    Article  ADS  Google Scholar 

  25. Tian, Z., Chä, S.Y., Fischer, U.R.: Roton entanglement in quenched dipolar Bose–Einstein condensates. Phys. Rev. A 97(1–12), 063611 (2018)

    Article  ADS  Google Scholar 

  26. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460–2473 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  28. Terashima, H.: Entanglement entropy of the black hole horizon. Phys. Rev. D 61(1–11), 104016 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  29. Ahn, D., Moon, Y.H., Mann, R.B., Fuentes-Schuller, I.: The black hole final state for the Dirac fields in Schwarzschild spacetime. J. High Energy Phys. 06(1–9), 062 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. Bombelli, L., Koul, R.K., Lee, J., Sorkin, R.D.: Quantum source of entropy for black holes. Phys. Rev. D 34, 373–383 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  31. Wang, J., Jing, J.: Multipartite entanglement of fermionic systems in noninertial frames. Phys. Rev. A 83(1–5), 022314 (2011)

    Article  ADS  Google Scholar 

  32. Xu, S., Song, X.K., Shi, J.D., Ye, L.: How the Hawking effect affects multipartite entanglement of Dirac particles in the background of a Schwarzschild black hole. Phys. Rev. D 89(1–7), 065022 (2014)

    Article  ADS  Google Scholar 

  33. Hwang, M.R., Park, D., Jung, E.: Tripartite entanglement in a noninertial frame. Phys. Rev. A 83(1–8), 012111 (2011)

    Article  ADS  Google Scholar 

  34. Dai, Y., Shen, Z., Shi, Y.: Quantum entanglement in three accelerating qubits coupled to scalar fields. Phys. Rev. D 94(1–17), 025012 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  35. Qiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames. Phys. Rev. A 98(1–7), 022320 (2018)

    Article  ADS  Google Scholar 

  36. Torres-Arenas, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of W-state in noninertial frames. Phys. Lett. B 789, 93–105 (2019)

    Article  ADS  Google Scholar 

  37. Wu, S.M., Zeng, H.S., Liu, T.H.: Quantum coherence of Gaussian states in curved spacetime. Results Phys. 14(1–6), 102398 (2019)

    Article  Google Scholar 

  38. Wang, J., Pan, Q., Jing, J.: Projective measurements and generation of entangled Dirac particles in Schwarzschild Spacetime. Ann. Phys. (Amsterdam) 325, 1190–1197 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  39. He, J., Xu, S., Yu, Y., Ye, L.: Property of various correlation measures of open Dirac system with Hawking effect in Schwarzschild space-time. Phys. Lett. B 740, 322–328 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 11275064), the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20124306110003) and the Construct Program of the National Key Discipline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao-Sheng Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SM., Zeng, HS. Multipartite quantum coherence and monogamy for Dirac fields subject to Hawking radiation. Quantum Inf Process 18, 305 (2019). https://doi.org/10.1007/s11128-019-2426-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2426-z

Keywords

Navigation