Skip to main content
Log in

Weak quantum correlation quantifiers with generalized entropies

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We define a broad class of quantum correlation quantifiers (QCQs) based on generalized entropies and projective measurements and compare it with the case where the measurements are weak for a broad class of weak measurements (WMs) that operate in finite-dimensional systems. We also propose a general way to define a WM using a measure of disturbance and show that the QCQs by these measurements are majorized by those defined by the projective ones. Our result strengthens the hypothesis that WMs reveal fewer quantum correlations than projective measurements in a way that depends very little on the type of the QCQ. Finally, we prove that the quantifier is increasing with the force of the measurement and, as an example, we analytically calculate a particular case using the linear entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31(4), 555 (1935)

    Article  ADS  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  5. Streltsov, A., Kampermann, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)

    Article  ADS  Google Scholar 

  6. Dakić, B., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)

    Article  Google Scholar 

  7. Horodecki, P., Tuziemski, J., Mazurek, P., Horodecki, R.: Can communication power of separable correlations exceed that of entanglement resource? Phys. Rev. Lett. 112, 140507 (2014)

    Article  ADS  Google Scholar 

  8. Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)

    Article  ADS  Google Scholar 

  9. Bera, A., Das, T., Sadhukhan, D., Roy, S.S., Sen(De), A., Sen, U.: Quantum discord and its allies: a review of recent progress. Rep. Prog. Phys. 81, 024001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Brun, T.A.: A simple model of quantum trajectories. Am. J. Phys. 70, 719 (2002)

    Article  ADS  Google Scholar 

  11. Singh, U., Pati, A.K.: Quantum discord with weak measurements. Ann. Phys. 343, 141 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Wang, Y.K., Ma, T., Fan, H., Fei, S.M., Wang, Z.X.: Super quantum correlation and geometry for Bell-diagonal states with weak measurements. Quantum Inf. Process. 13, 283 (2014)

    Article  ADS  Google Scholar 

  13. Zhang, J., Wu, S., Yu, C.: Quantum correlation cost of the weak measurement. Ann. Phys. 351, 104 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  14. Wu, S., Zhang, J., Yu, C., Song, H.: Weak measurements destroy too much quantum correlation. Int. J. Theor. Phys. 55, 62 (2015)

    Article  Google Scholar 

  15. Li, L., Wang, Q.W., Shen, S.Q., Li, M.: Geometric measure of quantum discord with weak measurements. Quantum Inf. Process. 15, 291 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Ye, B.L., Fei, S.M.: One-way quantum deficit for \(2\otimes d\) systems. Int. J. Theor. Phys. 55, 3637 (2016)

    Article  Google Scholar 

  17. Wang, Y., Hou, J., Qi, X.: Quantum correlation based on weak measurements. Int. J. Quantum Inf. 15, 1750041 (2017)

    Article  MathSciNet  Google Scholar 

  18. Dieguez, P.R., Angelo, R.M.: Weak quantum discord. Quantum Inf. Process. 17, 194 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. Jing, N., Yu, B.: Super quantum discord for general two qubit X states. Quantum Inf. Process. 16(4), 99 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Li, L.S., Tao, Y.H., Nan, H., Xu, H.: Super-quantum correlation for \(SU(2)\) invariant state in \(4\otimes 2\) system. Quantum Inf. Process. 17, 86 (2018)

    Article  ADS  Google Scholar 

  21. Mirmasoudi, F., Ahadpour, S.: Dynamics of super quantum discord and optimal dense coding in quantum channels. J. Phys. A Math. Theor. 51, 345302 (2018)

    Article  MathSciNet  Google Scholar 

  22. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  23. Partovi, M.H.: Majorization formulation of uncertainty in quantum mechanics. Phys. Rev. A 84, 052117 (2011)

    Article  ADS  Google Scholar 

  24. Oreshkov, O., Brun, T.A.: Weak measurements are universal. Phys. Rev. Lett. 95, 110409 (2005)

    Article  ADS  Google Scholar 

  25. Dieguez, P.R., Angelo, R.M.: Information-reality complementarity: the role of measurements and quantum reference frames. Phys. Rev. A 97, 022107 (2018)

    Article  ADS  Google Scholar 

  26. Wiseman, H., Milburn, G.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  27. Bosyk, G.M., Zozor, S., Holik, F., Portesi, M., Lamberti, P.W.: A family of generalized quantum entropies: definition and properties. Quantum Inf. Process. 15, 3393 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. Winter, A.: Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys. 347, 291 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Rossignoli, R., Canosa, N., Ciliberti, L.: Generalized entropic measures of quantum correlations. Phys. Rev. A 82, 052342 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  30. Wehrl, A.: General properties of entropy. Rev. Mod. Phys. 50, 221 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  31. Bosyk, G., Bellomo, G., Zozor, S., Portesi, M., Lamberti, P.: Unified entropic measures of quantum correlations induced by local measurements. Phys. A 462, 930 (2016)

    Article  MathSciNet  Google Scholar 

  32. Hu, X., Ye, Z.: Generalized quantum entropy. J. Math. Phys. 47, 023502 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  33. Aniello, P., Chruściński, D.: Characterizing the dynamical semigroups that do not decrease a quantum entropy. J. Phys. A Math. Theor. 49(34), 345301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  34. Brodutch, A., Modi, K.: Criteria for measures of quantum correlations. Quantum Inf. Comput. 12, 721 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Adesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A Math. Theor. 49, 473001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  36. Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  37. Girolami, D., Adesso, G.: Interplay between computable measures of entanglement and other quantum correlations. Phys. Rev. A 84, 052110 (2011)

    Article  ADS  Google Scholar 

  38. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Brazilian agencies CNPq (GRANT #458889120148), FAPEG (GRANT #201610267001030, PRONEN #201710267000540) for financial support and CAPES/FAPEG (DOCFIX) for the fellowship of T. M. Carrijo. Funding was provided by Fundação de Amparo à Pesquisa do Estado de Goiás (Grant Nos. 88887304663201800, 88887305522201800), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Grant Nos. 88887304663201800, 88887305522201800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Carrijo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Proof of Theorem 1

For the proof, first we need the following lemma:

Lemma 1

If \(\Arrowvert .\Arrowvert \) is a norm of \(L({\mathcal {H}})\) invariant by unitary similarity transformations (UST), then \(\sup _{\rho \in D_{P}}\Arrowvert \rho -P\Arrowvert =\sup _{\rho \in D_{Q}}\Arrowvert \rho -Q\Arrowvert \) for every rank-one projections P and Q, with \(D_{P}\equiv \{\rho \in {\mathcal {D}}({\mathcal {H}}):{{\,\mathrm{Tr}\,}}(P\rho )\ne 0\}\) and \(D_{Q}\) defined analogously.

Proof

Using the invariance by UST,

$$\begin{aligned} \Arrowvert \rho -P\Arrowvert =\Arrowvert U(\rho -P)U^{\dagger }\Arrowvert =\Arrowvert U\rho U^{\dagger }-UPU^{\dagger }\Arrowvert =\Arrowvert U\rho U^{\dagger }-Q\Arrowvert . \end{aligned}$$
(10)

The last equality follows from the fact that any rank-one projection has the form \(P=|\psi \rangle \langle \psi |\) for some normalized state \(|\psi \rangle \) and any normalized state defines a unique rank-one projection. Given any two state \(|\phi \rangle \) and \(|\psi \rangle \), there is a unitary operator U such that \(|\phi \rangle =U|\psi \rangle \). So, given any two rank-one projections P and Q, there is a unitary operator U such that \(Q=UPU^{\dagger }\).

Let \({\mathcal {R}}(P)\equiv \{\Arrowvert \rho -P\Arrowvert \in {\mathbb {R}}_{\ge 0}:\rho \in D_{P}\}\), so if \(x\in {\mathcal {R}}(P)\), \(\exists \rho :\Arrowvert \rho -P\Arrowvert =x\) and \({{\,\mathrm{Tr}\,}}(P\rho )\ne 0\), but \(\Arrowvert \rho -P\Arrowvert =\Arrowvert U\rho U^{\dagger }-Q\Arrowvert \) for the unitary operator U and \({{\,\mathrm{Tr}\,}}(P\rho )={{\,\mathrm{Tr}\,}}(UPU^{\dagger }U\rho U^{\dagger })={{\,\mathrm{Tr}\,}}(QU\rho U^{\dagger })\ne 0\Rightarrow x\in {\mathcal {R}}(Q)\Rightarrow {\mathcal {R}}(P)\subseteq {\mathcal {R}}(Q)\). In the same way, if \(y\in {\mathcal {R}}(Q)\), \(\exists \rho :\Arrowvert \rho -Q\Arrowvert =y\) and \({{\,\mathrm{Tr}\,}}(Q\rho )\ne 0\), but \(\Arrowvert \rho -Q\Arrowvert =\Arrowvert U^{\dagger }\rho U -U^{\dagger }QU\Arrowvert =\Arrowvert U^{\dagger }\rho U -P\Arrowvert \) and \({{\,\mathrm{Tr}\,}}(Q\rho )={{\,\mathrm{Tr}\,}}(U^{\dagger }QUU^{\dagger }\rho U)={{\,\mathrm{Tr}\,}}(PU^{\dagger }\rho U)\ne 0\Rightarrow y\in {\mathcal {R}}(P)\Rightarrow {\mathcal {R}}(Q)\subseteq {\mathcal {R}}(P)\), so \({\mathcal {R}}(P)={\mathcal {R}}(Q)\Rightarrow \sup _{\rho \in D_{P}}\Arrowvert \rho -P\Arrowvert =\sup _{\rho \in D_{Q}}\Arrowvert \rho -Q\Arrowvert \). \(\square \)

For Theorem 1, we will use the Frobenius norm, which is invariant by UST.

Proof of Theorem 1

With \(\rho '\equiv M\rho M^{\dagger }/p_{M}\), by the Frobenius norm we have

$$\begin{aligned} \Arrowvert \rho -\rho '\Arrowvert ^{2}={{\,\mathrm{Tr}\,}}(\rho ^{2})+{{\,\mathrm{Tr}\,}}(\rho '^{2})-2{{\,\mathrm{Tr}\,}}(\rho \rho '). \end{aligned}$$
(11)

By Eq. (11), we have

$$\begin{aligned} \sup _{M}\sup _{\rho \in D_{M}}\Arrowvert \rho -M\rho M^{\dagger }/p_{M}\Arrowvert \le \sup _{\rho ,\rho ''\in D({\mathcal {H}})}\Arrowvert \rho -\rho ''\Arrowvert =\Arrowvert Q-P\Arrowvert =\sqrt{2},\langle Q,P\rangle =0, \end{aligned}$$
(12)

where P and Q are rank-one projections and \(\langle Q,P\rangle \equiv {{\,\mathrm{Tr}\,}}(Q^{\dagger }P)={{\,\mathrm{Tr}\,}}(QP)\) is the trace inner product. For every value \(\epsilon \in (0,1]\) it is possible to find a rank-one projection R such that \(\langle R,P\rangle =\epsilon \). The number \(\sqrt{2}\) is an upper bound for \(\sup _{R:\langle R,P\rangle \ne 0}\Arrowvert R-P\Arrowvert \). Suppose there exists another upper bound \(\delta <\sqrt{2}\). Then,

$$\begin{aligned} \Arrowvert R-P\Arrowvert = \sqrt{2-2\epsilon }\le \delta \Rightarrow \epsilon \ge 1-\delta ^2/2 >0 , \end{aligned}$$

but as \(\epsilon \in (0,1]\), \(\exists \epsilon \in \left( 0,1-\delta ^2 /2\right) :\sqrt{2-2\epsilon }>\delta , \) what is an absurd. Thus, \(\sqrt{2}\) is the least upper bound. Using Lemma 1, we conclude that

$$\begin{aligned} \sup _{M}\sup _{\rho \in D_{M}}\Arrowvert \rho -M\rho M^{\dagger }/p_{M}\Arrowvert =\sup _{\rho \in D_{P}}\Arrowvert \rho -P\Arrowvert =\sup _{R:\langle R,P\rangle \ne 0}\Arrowvert R-P\Arrowvert =\sqrt{2}. \end{aligned}$$
(13)

\(\square \)

Proof of Theorem 2

Proof

With \(\varPhi _{B}(\rho )=\sum _{k=1}^{n}(\mathbb {1}_{A}\otimes P_{k})\rho (\mathbb {1}_{A}\otimes P_{k})\), \(\dim ({\mathcal {H}}_{A})=m\) and \(\dim ({\mathcal {H}}_{B})=n\), we have \({\mathfrak {M}}_{r,\varPhi _{B}}=\{M_{k}\}_{k=1}^{n}\) such that \(M_{k}\equiv \sqrt{(1-r)/n}\mathbb {1}_{AB}+i\sqrt{r}\mathbb {1}_{A}\otimes P_{k}\) where \(r\in (0,1)\). Then,

$$\begin{aligned} p_{k}\rho _{k}&=\frac{1-r}{n}\rho +i\sqrt{\frac{(1-r)r}{n}}[(\mathbb {1}_{A}\otimes P_{k}),\rho ]+r(\mathbb {1}_{A}\otimes P_{k})\rho (\mathbb {1}_{A}\otimes P_{k}),\nonumber \\ p_{k}&\equiv \frac{1-r}{n}+rq_{k},\quad q_{k}\equiv {{\,\mathrm{Tr}\,}}((\mathbb {1}_{A}\otimes P_{k})\rho ). \end{aligned}$$
(14)

Then,

$$\begin{aligned} \Vert \rho -\rho _{k}\Vert \le&\bigg \Vert \bigg (1-\frac{(1-r)}{np_{k}}\bigg )\rho +\frac{r}{p_{k}}(\mathbb {1}_{A}\otimes P_{k})\rho (\mathbb {1}_{A}\otimes P_{k})\bigg \Vert \nonumber \\&+\frac{1}{p_{k}}\sqrt{\frac{(1-r)r}{n}}\Vert (\mathbb {1}_{A}\otimes P_{k})\rho -\rho (\mathbb {1}_{A}\otimes P_{k})\Vert \end{aligned}$$
(15)

Let the first term in the right side of the inequality be Q and the second term be \(Q^{\prime }\). We can write \(\rho =\sum _{l}\lambda _{l}|l\rangle \langle l|\), with \(|l\rangle =\sum _{i,j}\psi ^{(l)}_{i,j}|a_{i}\rangle |b_{j}\rangle \), where \(\{|l\rangle \}\) is an orthonormal basis. Then,

$$\begin{aligned} Q&\le \bigg \arrowvert 1-\frac{1-r}{np_{k}}\bigg \arrowvert \Vert \rho \Vert +\frac{r}{p_{k}}\Vert (\mathbb {1}_{A}\otimes P_{k})\rho (\mathbb {1}_{A}\otimes P_{k})\Vert , \end{aligned}$$
(16)
$$\begin{aligned} \Vert (\mathbb {1}_{A}\otimes P_{k})\rho (\mathbb {1}_{A}\otimes P_{k})\Vert&\le \sum _{l}\sum _{i,i'}\lambda _{l}|\psi ^{(l)}_{i,k}||\psi ^{(l)}_{i',k}|\Vert |a_{i}\rangle \langle a_{i'}|\otimes |b_{k}\rangle \langle b_{k}|\Vert \nonumber \\&\le \sum _{l}\sum _{i,i'}\Vert |a_{i}\rangle \langle a_{i'}|\otimes |b_{k}\rangle \langle b_{k}|\Vert \nonumber \\&=\sum _{l}\sum _{i,i'}\Vert U_{A}|a_{i}\rangle \langle a_{i'}|U^{\dagger }_{A}\otimes U_{B}|b_{k}\rangle \langle b_{k}|U^{\dagger }_{B}\Vert \nonumber \\&\le n(m)^{3}\alpha \end{aligned}$$
(17)

where \(P_{k}\equiv |b_{k}\rangle \langle b_{k}|\), \(\alpha \equiv \max _{i,i',k}\{\Vert |a_{i}\rangle \langle a_{i'}|\otimes |b_{k}\rangle \langle b_{k}|\Vert \}\). The value of \(\alpha \) is the same for any orthonormal basis of \({\mathcal {H}}_{A}\) and \({\mathcal {H}}_{B}\) by the UST invariance of the norm, which implies that it does not depend on the choice of \(\varPhi _{B}\). Now, we treat another term in inequality (16):

$$\begin{aligned} \frac{1-r}{np_{k}}=\frac{1-r}{1-r+nrq_{k}}\le 1\Rightarrow \bigg \arrowvert 1-\frac{1-r}{np_{k}}\bigg \arrowvert \le \frac{nr}{1-r}. \end{aligned}$$
(18)

We also have \(\Vert \rho \Vert \le \max \{\Vert |l\rangle \langle l|\Vert \}\equiv \beta \), which is valid for any \(\rho \) by the UST invariance of the norm. By (17), (18) in (16),

$$\begin{aligned} Q\le \bigg (n\beta +n^2 m^3\alpha \bigg )\frac{r}{1-r}. \end{aligned}$$
(19)

We also are going to find an upper bound for \(Q'\). Doing calculations similar to what was done in (17) for \(\Vert (\mathbb {1}_{A}\otimes P_{k})\rho -\rho (\mathbb {1}_{A}\otimes P_{k})\Vert \), we conclude that this term has a nonzero finite upper bound \(\gamma \) for any \(\rho \) and \(\varPhi _{B}\). Then,

$$\begin{aligned} Q'\le \sqrt{\frac{nr}{1-r}}\gamma . \end{aligned}$$
(20)

Considering arbitrary \(\epsilon >0\) and the inequalities (19) and (20), we have

$$\begin{aligned}&r<\delta _{1}(\epsilon )\equiv \frac{\epsilon /3}{n\beta +\epsilon /3}\Rightarrow \frac{n\beta r}{1-r}<\epsilon /3.\nonumber \\&r<\delta _{2}(\epsilon )\equiv \frac{\epsilon /3}{n^2 m^3 \alpha +\epsilon /3}\Rightarrow \frac{n^2 m^3 \alpha r}{1-r}<\epsilon /3.\nonumber \\&r<\delta _{3}(\epsilon )\equiv \frac{(\epsilon /3)^2}{n\gamma ^2+(\epsilon /3)^2}\Rightarrow \sqrt{\frac{nr}{1-r}}\gamma <\epsilon /3. \end{aligned}$$
(21)

Using (19), (20) and (21) in (15), we have

$$\begin{aligned} \forall \epsilon >0, \exists \epsilon ''\in (0,\epsilon ),\delta '\equiv \min \{\delta _{k}(\epsilon '')\}_{k=1}^{3}: r\in (0,\delta ')\Rightarrow \sup _{\rho \in D_{k}}\Vert \rho -\rho _{k}\Vert \le \epsilon ''<\epsilon . \end{aligned}$$
(22)

As the result in (22) is valid for any k, we have \((1-\sum _{k}p_{k})=0\), which implies that for any \(\delta >0\) and \(\epsilon >0\), there exists a \((\epsilon ,\delta )\)-WM set that belongs to the family. \(\square \)

Proof of Theorem 4

Lemma 2

The set \(C_{\rho }^{B}\equiv \{\varPhi _{B}(\rho )\in D({\mathcal {H}}_{AB}):\varPhi _{B}\in \varGamma ^{P}_{B}\}\) is compact \(\forall \rho \in D({\mathcal {H}}_{AB})\) as a topological subspace of \(L({\mathcal {H}}_{AB})\).

Proof

Consider the topology of the normed vector spaces \(L({\mathcal {H}}_{AB})\) and \(L({\mathcal {H}}_{B})\) induced by the Frobenius norms \(\Arrowvert . \Arrowvert _{AB}\) and \(\Arrowvert . \Arrowvert _{B}\). With \(\dim ({\mathcal {H}}_{B})=n\), we have \(U(n)\subset L({\mathcal {H}}_{B})\) as the topological subspace of unitary operators. The set \(C^{B}_{\rho }\subset L({\mathcal {H}}_{B})\) also has the subspace topology. The projection \(P_{k}\) has the form \(P_{k}=|k\rangle \langle k|\), where \(\{|1\rangle ,\dots ,|n\rangle \}\) is an orthonormal basis of \({\mathcal {H}}_{B}\). Any other orthonormal basis is obtained applying an unitary operator U so, fixing the set of projections, any map \(\varPhi _{B}\in \varGamma ^{P}_{B}\) has the form \(\varPhi _{B}(X)=\sum _{k=1}^{n}(\mathbb {1}_{A}\otimes UP_{k}U^{\dagger })X(\mathbb {1}_{A}\otimes UP_{k}U^{\dagger })\) for some U. Let \(F_{\rho }:U(n)\rightarrow D({\mathcal {H}}_{AB})\) be a function such that \(F_{\rho }(U)=\sum _{k=1}^{n}(\mathbb {1}_{A}\otimes UP_{k}U^{\dagger })\rho (\mathbb {1}_{A}\otimes UP_{k}U^{\dagger })\) for \(\rho \in D({\mathcal {H}}_{AB})\) and for a fixed set of projections. We prove that this function is continuous. Let \(U, V\in U(n)\) and \(Z\equiv U-V\Rightarrow U=Z+V\). Using the Frobenius norm, \(\Arrowvert I\otimes Y\Arrowvert =\sqrt{n}\Arrowvert Y\Arrowvert \). Defining \(\varDelta \equiv \Arrowvert F_{\rho }(U)-F_{\rho }(V)\Arrowvert \), we have

(23)

By the fact that \(\Arrowvert V\Arrowvert =\sqrt{n}\), \(\Arrowvert P_{k}\Arrowvert =1\), \(\Arrowvert \rho \Arrowvert \le 1\) and \(\Arrowvert Z\Arrowvert \le 2\sqrt{n}\), it is easy to see that the sum in the right side of the inequality has an upper bound \(\alpha \) such that:

$$\begin{aligned} \forall \epsilon>0,\exists \delta \equiv \frac{\epsilon }{n\alpha }>0:\Arrowvert U-V\Arrowvert<\delta \Rightarrow \Arrowvert F_{\rho }(U)-F_{\rho }(V)\Arrowvert <\epsilon . \end{aligned}$$
(24)

By the proposition (24), we conclude that \(F_{\rho }\) is continuous for any \(\rho \) and at any point \(V\in U(n)\). By the fact that U(n) is a compact space, \(F_{\rho }(U(n))=C^{B}_{\rho }\) is also compact for any \(\rho \). \(\square \)

Corollary 1

The topological subspace \(C^{B}_{r, \rho }\equiv \{(1-r)\rho +r\varPhi _{B}(\rho ):\varPhi _{B}\in \varGamma ^{P}_{B}\}\) is compact \(\forall r\in (0,1)\) and \(\forall \rho \in D({\mathcal {H}}_{AB})\).

These results are necessary to guarantee that the infimum occurs at a minimum point inside the set (\(C^{B}_{\rho }\) or \(C^{B}_{w, \rho }\)). Now, we show that our quantifiers are invariant by local UST:

Proof of Theorem 4

Using the property that S is invariant by UST,

$$\begin{aligned} S\circ \varPhi _{B}(U_{A}\otimes U_{B}\rho U^{\dagger }_{A}\otimes U^{\dagger }_{B})&=S((U_{A}\otimes \mathbb {1}_{B})\varPhi _{B}(\mathbb {1}_{A}\otimes U_{B}\rho \mathbb {1}_{A}\otimes U^{\dagger }_{B})(U^{\dagger }_{A}\otimes \mathbb {1}_{B}))\nonumber \\&=S\circ \varPhi _{B}(\mathbb {1}_{A}\otimes U_{B}\rho \mathbb {1}_{A}\otimes U^{\dagger }_{B})\nonumber \\&=S\left( \sum _{k}(\mathbb {1}_{A}\otimes U^{\dagger }_{B}P_{k}U_{B})\rho (\mathbb {1}_{A}\otimes U^{\dagger }_{B}P_{k}U_{B})\right) \nonumber \\&=S\left( \sum _{k}\mathbb {1}_{A}\otimes Q_{k}\rho \mathbb {1}_{A}\otimes Q_{k}\right) =S\circ \varPhi '_{B}(\rho ), \end{aligned}$$
(25)

where \(\{Q_{K}\}\) is a set of rank-one orthogonal projections and \(\varPhi '_{B}(\rho )\) is the result of the non-selective projective measurement. By Lemma 2, there is \(\varPhi ''_{B}\) and \(\varPhi '''_{B}\) such that \(\inf _{\varPhi _{B}}S\circ \varPhi _{B}(\rho )=S\circ \varPhi ''_{B}(\rho )\) and \(\inf _{\varPhi _{B}}S\circ \varPhi _{B}(U_{A}\otimes U_{B}\rho U^{\dagger }_{A}\otimes U^{\dagger }_{B})=S\circ \varPhi '''_{B}(U_{A}\otimes U_{B}\rho U^{\dagger }_{A}\otimes U^{\dagger }_{B})\). So, for \(\varPhi ''_{B}\) and \(\varPhi '''_{B}\) exist \({\tilde{\varPhi }}_{B}\) and \({\tilde{\varPhi }}'_{B}\) such that

$$\begin{aligned} \inf _{\varPhi _{B}}S\circ \varPhi _{B}(U_{A}\otimes U_{B}\rho U^{\dagger }_{A}\otimes U^{\dagger }_{B})&=S\circ \varPhi '''_{B}(U_{A}\otimes U_{B}\rho U^{\dagger }_{A}\otimes U^{\dagger }_{B})=S\circ {\tilde{\varPhi }}'_{B}(\rho )\nonumber \\&\ge \inf _{\varPhi _{B}}S\circ \varPhi _{B}(\rho ), \end{aligned}$$
(26)

and

$$\begin{aligned} \inf _{\varPhi _{B}}S\circ \varPhi _{B}(\rho )&=S\circ \varPhi ''_{B}(\rho )=S\circ {\tilde{\varPhi }}_{B}(U_{A}\otimes U_{B}\rho U^{\dagger }_{A}\otimes U^{\dagger }_{B})\nonumber \\&\ge \inf _{\varPhi _{B}}S\circ \varPhi _{B}(U_{A}\otimes U_{B}\rho U^{\dagger }_{A}\otimes U^{\dagger }_{B}). \end{aligned}$$
(27)

Now, using Eqs.(26) and (27), we conclude that

$$\begin{aligned} \inf _{\varPhi _{B}}S\circ \varPhi _{B}(U_{A}\otimes U_{B}\rho U^{\dagger }_{A}\otimes U^{\dagger }_{B})&=\inf _{\varPhi _{B}}S\circ \varPhi _{B}(\rho ) \Rightarrow \nonumber \\ S\circ \varPhi '''_{B}(U_{A}\otimes U_{B}\rho U^{\dagger }_{A}\otimes U^{\dagger }_{B})&=S\circ \varPhi ''_{B}(\rho ). \end{aligned}$$
(28)

From Eq. (28) and using the fact that S is invariant by UST, we have

$$\begin{aligned} I_{p}(U_{A}\otimes U_{B}\rho U^{\dagger }_{A}\otimes U^{\dagger }_{B})&=S\circ \varPhi '''_{B}(U_{A}\otimes U_{B}\rho U^{\dagger }_{A}\otimes U^{\dagger }_{B})-S(\rho )\nonumber \\&=S\circ \varPhi ''_{B}(\rho )-S(\rho )\nonumber \\&=I_{p}(\rho ). \end{aligned}$$
(29)

The proof for \(I^{r}_{w}\) is similar. \(\square \)

Proofs of Theorems 5 and 6

Proof of Theorem 5

First, we prove a short result:

$$\begin{aligned} {{\,\mathrm{Tr}\,}}((\varPhi _{B}(\rho ))^{2})&={{\,\mathrm{Tr}\,}}\left( \sum _{k,l}(\mathbb {1}_{A}\otimes P_{k})\rho (\mathbb {1}_{A}\otimes P_{k}) (\mathbb {1}_{A}\otimes P_{l})\rho (\mathbb {1}_{A}\otimes P_{l})\right) \nonumber \\&={{\,\mathrm{Tr}\,}}\left( \sum _{k}(\mathbb {1}_{A}\otimes P_{k})\rho (\mathbb {1}_{A}\otimes P_{k})\rho \right) ={{\,\mathrm{Tr}\,}}(\varPhi _{B}(\rho )\rho ). \end{aligned}$$
(30)

By Corollary 1, if \(I_{w}^{r}(\rho )=0\), \(\exists {\mathcal {M}}^{r}_{B}:S\circ {\mathcal {M}}^{r}_{B}(\rho )=S(\rho )\). With \(\rho ^{\prime }\equiv {\mathcal {M}}^{r}_{B}(\rho )\), we have \(\rho ^{\prime }\prec \rho \). If \(\rho ^{\prime }\ne U\rho U^{\dagger }\) for any unitary U, then at least one of the inequalities at (1) is strict, which implies that \(S(\rho ^{\prime })>S(\rho )\), because S is strictly SC. This is an absurd, so \(\rho ^{\prime }=U\rho U^{\dagger }\) for some unitary U. So, we have

$$\begin{aligned} (1-r)\rho +r\varPhi _{B}(\rho )&=U\rho U^{\dagger }\Rightarrow (1-r)^{2}\rho ^{2}+r^{2}(\varPhi _{B}(\rho ))^{2}+(1-r)r[\rho \varPhi _{B}(\rho )\nonumber \\&\quad +\varPhi _{B}(\rho )\rho ] =U\rho ^{2}U^{\dagger }. \end{aligned}$$
(31)

Using Eq. (30) in (31) and applying the trace function,

$$\begin{aligned} (-2r+r^{2}){{\,\mathrm{Tr}\,}}(\rho ^{2})-(-2r+r^{2}){{\,\mathrm{Tr}\,}}(\varPhi _{B}(\rho )\rho )&=0 \Rightarrow {{\,\mathrm{Tr}\,}}(\rho ^{2})={{\,\mathrm{Tr}\,}}(\varPhi _{B}(\rho )\rho )\nonumber \\&={{\,\mathrm{Tr}\,}}((\varPhi _{B}(\rho ))^{2}). \end{aligned}$$
(32)

By the Cauchy–Schwarz inequality applied to the trace inner product,

$$\begin{aligned} {{\,\mathrm{Tr}\,}}(\varPhi _{B}(\rho )\rho )^{2}&={{\,\mathrm{Tr}\,}}(\rho ^{2}){{\,\mathrm{Tr}\,}}(\varPhi _{B}(\rho )^{2})\Rightarrow \rho =\lambda \varPhi _{B}(\rho )\Rightarrow {{\,\mathrm{Tr}\,}}(\rho )=\lambda {{\,\mathrm{Tr}\,}}(\varPhi _{B}(\rho ))\nonumber \\&\Rightarrow \lambda =1. \end{aligned}$$
(33)

So, \(\rho =\varPhi _{B}(\rho )\). The same result applies when \(I_{p}(\rho )=0\). \(\square \)

Proof of Theorem 6

Let \(\{P_{k}\}\) be a set of rank-one orthogonal projections that acts on \({\mathcal {H}}_{B}\), \(\dim ({\mathcal {H}}_{B})=n\), such that \(\sum _{k}P_{k}=\mathbb {1}_{B}\). Let \(F:U(n)\times D({\mathcal {H}}_{AB})\rightarrow D({\mathcal {H}}_{AB})\) be a function such that \(F(U,\rho )\equiv \sum _{k}(\mathbb {1}_{A}\otimes UP_{k}U^{\dagger })\rho (\mathbb {1}_{A}\otimes UP_{k}U^{\dagger })\). We can define a metric d on \(U(n)\times D({\mathcal {H}}_{AB})\) as \(d((U,\rho ),(V,\sigma ))=\Arrowvert U-V\Arrowvert +\Arrowvert \rho -\sigma \Arrowvert \). The norm used is the Frobenius norm. Set \(W\equiv U-V\) and \(\alpha \equiv \rho -\sigma \). We have

(34)

By the fact that \(\Arrowvert V\Arrowvert =\sqrt{n}\), \(\Arrowvert P_{k}\Arrowvert =1\), \(\Arrowvert \sigma \Arrowvert \le 1\), \(\Arrowvert \alpha \Arrowvert \le 2\) and \(\Arrowvert W\Arrowvert \le 2\sqrt{n}\), it is easy to see that the sums in the right side of inequality have upper bound \(\beta \) such that:

$$\begin{aligned} \forall \epsilon>0,\exists \delta \equiv \frac{\epsilon }{2n\beta }>0:d((U,\rho ),(V,\sigma ))<\delta&\Rightarrow \Arrowvert W\Arrowvert<\delta , \Arrowvert \alpha \Arrowvert<\delta \nonumber \\&\Rightarrow \Arrowvert F(U,\rho )-F(V,\sigma )\Arrowvert <\epsilon . \end{aligned}$$
(35)

So, F is a continuous function. Let \(S':U(n)\times D({\mathcal {H}}_{AB})\rightarrow {\mathbb {R}}\) be a function such that \(S'(U,\rho )=S(\rho )\quad \forall U\in U(n)\). The function S is continuous, so \(S'\) is a continuous function and, therefore, \(J\equiv S\circ F-S'\) is continuous. The set U(n) is compact, so the function \(I_{p}(\rho )=\inf _{U\in U(n)}J(U,\rho )\) is also continuous. The proof that \(I_{w}^{r}\) is continuous is similar and it will be omitted. \(\square \)

Proof of Theorem 8

Lemma 3

\(\forall r^{\prime }<r\), with \(r^{\prime },r\in (0,1), \exists r''\in (0,1):{\mathcal {M}}^{r}_{B}={\mathcal {M}}^{r''}_{B}\circ {\mathcal {M}}^{r'}_{B}\).

Proof

We have

$$\begin{aligned} {\mathcal {M}}^{r}_{B}&={\mathcal {M}}^{r''}_{B}\circ {\mathcal {M}}^{r'}_{B}(\rho )=(1-r')(1-r'')\rho +[(1-r'')r'+(1-r')r''\nonumber \\&\quad +r'r'']\varPhi _{B}(\rho ). \end{aligned}$$
(36)

We want to find \(r''\) such that \({\mathcal {M}}^{r}_{B}={\mathcal {M}}^{r''}_{B}\circ {\mathcal {M}}^{r'}_{B}\). We can do it by finding a solution for the equations:

$$\begin{aligned}&1-r=(1-r')(1-r'')\nonumber \\&r=(1-r'')r'+(1-r')r''+r'r''. \end{aligned}$$
(37)

Considering \(r^{\prime }<r\) and \(r^{\prime },r\in (0,1)\), the solution is

$$\begin{aligned} r''=1-(1-r)/(1-r'), r''\in (0,1). \end{aligned}$$
(38)

\(\square \)

Now, the proof of Theorem 8:

Proof

From Lemma 3 and by the non-decreasing property of S by the application of a CPTP unital map,

$$\begin{aligned} S\circ {\mathcal {M}}^{r''}_{B}\circ {\mathcal {M}}^{r'}_{B}(\rho )=S\circ {\mathcal {M}}^{r}_{B}(\rho )\ge S\circ {\mathcal {M}}^{r'}_{B}(\rho )\Rightarrow I_{w}^{r}(\rho )\ge I_{w}^{r^{\prime }}(\rho ). \end{aligned}$$
(39)

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrijo, T.M., Avelar, A.T. Weak quantum correlation quantifiers with generalized entropies. Quantum Inf Process 18, 308 (2019). https://doi.org/10.1007/s11128-019-2416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2416-1

Keywords

Navigation