Skip to main content
Log in

Weak measurements, non-classicality and negative probability

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper establishes a direct, robust, and intimate connection among (i) non-classicality tests for various quantum features, e.g. non-Boolean logic, quantum coherence, nonlocality, quantum entanglement, quantum discord; (ii) negative probability, and, (iii) anomalous weak values. It has been shown (Adhikary et al. Eur Phys J D 74(68):68, 2020; Asthana et al. Quantum Inform Process 20(1):1–33, 2021) that the nonexistence of a classical joint probability scheme gives rise to sufficiency conditions for nonlocality, a nonclassical feature not restricted to quantum mechanics. The conditions for nonclassical features of quantum mechanics are obtained by employing pseudo-probabilities, which are expectation values of the parent pseudo-projections. The crux of the paper is that the pseudo-probabilities, which can take negative values, can be directly measured as anomalous weak values. We expect that this opens up new avenues for testing nonclassicality via weak measurements and also gives deeper insight into negative pseudo-probabilities, which become measurable. A quantum game, based on violation of a classical probability rule, is also proposed that can be played by employing weak measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Entanglement inequalities are violated by all the separable states and obeyed by at least one entangled state.

  2. For example, in quantum mechanics, probability amplitudes add, and not the probabilities.

  3. For the sake of brevity, we represent both observables and operators by the same symbol throughout.

  4. For example, the most general PP representing the joint outcome, \(O_1=o_1, O_2=o_2\) and \(O_3=o_3\) is,

    $$\begin{aligned} {\varvec{\Pi }}=\nu _1{\varvec{\Pi }}_1+\nu _2{\varvec{\Pi }}_2+\nu _3{\varvec{\Pi }}_3;~0\le \nu _i\le 1;~\sum _{i=1}^3\nu _i=1, \end{aligned}$$

    where,

    $$\begin{aligned} {\varvec{\Pi }}_{1}=\dfrac{1}{2}(\pi _{o_1}\pi _{o_2}\pi _{o_3}+\mathrm{h.c.});~{\varvec{\Pi }}_{2}=\dfrac{1}{2}(\pi _{o_2}\pi _{o_1}\pi _{o_3}+\mathrm{h.c.});~{\varvec{\Pi }}_{3}=\dfrac{1}{2}(\pi _{o_1}\pi _{o_3}\pi _{o_2}+\mathrm{h.c.}). \end{aligned}$$
  5. This situation can occur elsewhere as well. For example, nonlocality can be detected by both—inequalities and Hardy-type paradoxes [55].

  6. The unit pseudoprojection \({\varvec{\Pi }}_{a_1a_2a_1a_3}\) is given as,

    $$\begin{aligned} {\varvec{\Pi }}_{a_1a_2a_1a_3} =\frac{1}{2}(\pi _{a_2}\pi _{a_1}\pi _{a_1}\pi _{a_3}+\pi _{a_3}\pi _{a_1}\pi _{a_1}\pi _{a_2})= \frac{1}{2}(\pi _{a_2}\pi _{a_1}\pi _{a_3}+\pi _{a_3}\pi _{a_1}\pi _{a_2}). \end{aligned}$$
  7. Even the completely mixed two-dimensional state has a negative pseudo-probability for the joint event, when \({\varvec{\sigma }}\cdot \hat{a}_1, {\varvec{\sigma }}\cdot \hat{a}_2, {\varvec{\sigma }}\cdot \hat{a}_3\) take value \(+1\), where \(\hat{a}_1, \hat{a}_2, \hat{a}_3\) are coplanar and at an included angle of \(\frac{2\pi }{3}\). The completely symmetrised PP can be constructed as follows:

    $$\begin{aligned} {\varvec{\Pi }}_{a_1a_2a_3}&=\dfrac{1}{3!}(\pi _{a_1}\pi _{a_2}\pi _{a_3}+\pi _{a_1}\pi _{a_3}\pi _{a_2}+\pi _{a_2}\pi _{a_1}\pi _{a_3}+\pi _{a_2}\pi _{a_3}\pi _{a_1}+\pi _{a_3}\pi _{a_1}\pi _{a_2}+\pi _{a_3}\pi _{a_2}\pi _{a_1})\\&=-\dfrac{1}{16}, \end{aligned}$$

    whose overlap with the completely mixed state is negative, \(-\frac{1}{16}\).

References

  1. Schrödinger, E.: Quantisation as a problem of proper values (part iv). Annalen der Physik 81, 102–123 (1926)

    Google Scholar 

  2. Heisenberg, W: Zeitschrift für Physik 33, 879–893 (1925)

  3. Dirac, P.A.M.: The physical interpretation of quantum dynamics. Proc. Roy. Soc. Lond. A 113, 621–641 (1927)

    Article  ADS  MATH  Google Scholar 

  4. Feynman, R.P.: Space time approach to non relativistic quantum mechanics. Rev. Mod. Phys 20, 367–387 (1948)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bohm, D.: A suggested interpretation of quantum theory in terms of hidden variables. Phys. Rev. 85, 166–179 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Nelson, E.: Derivation of the schrodinger equation from newtonian mechanics. Phys. Rev. 150, 1079 (1966)

    Article  ADS  Google Scholar 

  7. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  8. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23(50), 844 (1935)

    Article  ADS  MATH  Google Scholar 

  9. Bell, J.S.: On the einstein podolsky rosen paradox. Phys. Physique Fizika 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  10. Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17(1), 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  11. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351–1354 (1988)

    Article  ADS  Google Scholar 

  12. Vaidman, L.: In Greenberger, D., Hentschel, K., Weintert, F. (eds.) Compendium of Quantum Physics: Concepts, Experiments, History and Philosophy. Springer Science & Business Media (2009)

  13. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  15. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672–5675 (1998)

    Article  ADS  Google Scholar 

  16. Shi, H.-L., Liu, S.-Y., Wang, X.-H., Yang, W.-L., Yang, Z.-Y., Fan, H.: Coherence depletion in the grover quantum search algorithm. Phys. Rev. A 95, 032307 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on einstein-podolsky-rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

  20. Streltsov, A., Kampermann, H., BruĂź, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)

    Article  ADS  Google Scholar 

  21. Somm K., Aiman K., Jebarathinam, C., Dipankar, H.: Remote state preparation using correlations beyond discord. Phys. Rev. A 98, 062320 (2018)

  22. Birkhoff, G., Von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37(4), 823–843 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fine, A.: Hidden variables, joint probability, and the bell inequalities. Phys. Rev. Lett. 48, 291 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  24. Adhikary, S., Asthana, S., Ravishankar, V.: A unified framework for non-classicality: emergence of non-locality and entanglement. Eur. Phys. J. 74(68), 68 (2020)

    ADS  Google Scholar 

  25. Asthana, S., Adhikary, S., Ravishankar, V.: Non-locality and entanglement in multi-qubit systems from a unified framework. Quantum Inform. Process. 20(1), 1–33 (2021)

    Article  MathSciNet  Google Scholar 

  26. Margenau, H., Hill, R.N.: Correlation between measurements in quantum theory. Prog. Theor. Phys. 26(5), 722–738 (11) (1961)

  27. Barut, A.O., Božić, M., Marić, Z.: Joint probabilities of noncommuting operators and incompleteness of quantum mechanics. Found. Phys. 18(10), 999–1012 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  28. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Michał, H., Paweł, H., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1), 1–8 (1996)

    MathSciNet  MATH  Google Scholar 

  30. Gühne, O., Hyllus, P., Bruss, D., Ekert, A., Lewenstein, M., Macchiavello, C., Sanpera, A.: Experimental detection of entanglement via witness operators and local measurements. J. Modern Opt. 50(6–7), 1079–1102 (2003)

    Article  ADS  MATH  Google Scholar 

  31. Vaidman, L.: Protective measurements. 0801, 2761 (2008)

  32. Pusey, M.F.: Anomalous weak values are proofs of contextuality. Phys. Rev. Lett. 113, 200401 (2014)

    Article  ADS  Google Scholar 

  33. Hosoya, A., Shikano, Y.: Strange weak values. J. Phys. A Math. Theor. 43(38), 385307 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Lundeen, J.S., Bamber, C.: Procedure for direct measurement of general quantum states using weak measurement. Phys. Rev. Lett. 108, 070402 (2012)

    Article  ADS  Google Scholar 

  35. Bamber, C., Lundeen, J.S.: Observing dirac’s classical phase space analog to the quantum state. Phys. Rev. Lett. 112, 070405 (2014)

  36. Higgins, B.L., Palsson, M.S., Xiang, G.Y., Wiseman, H.M., Pryde, G.J.: Using weak values to experimentally determine “negative probabilities” in a two-photon state with bell correlations. Phys. Rev. A 91, 012113 (2015)

  37. Piacentini, F., Avella, A., Levi, M.P., Gramegna, M., Brida, G., Degiovanni, I.P., Cohen, E., Lussana, R., Villa, F., Tosi, A., Zappa, F., Genovese, M.: Measuring incompatible observables by exploiting sequential weak values. Phys. Rev. Lett. 117, 170402 (2016)

    Article  ADS  Google Scholar 

  38. Dziewior, J., Knips, L., Farfurnik, D., Senkalla, K., Benshalom, N., Efroni, J., Meinecke, J., Bar-Ad, S., Weinfurter, H., Vaidman, L. (eds.) Universality of local weak interactions and its application for interferometric alignment. Proc. Nat. Acad. Sci. 116(8), 2881–2890 (2019)

  39. Dirac, P.A.M.: Bakerian lecture. the physical interpretation of quantum mechanics. Proc. Roy. Soc. of Lond. A Math. Phys. Eng. Sci. 180(980), 1–40 (1942)

  40. Feynman, R.P.: In Hiley, B., Peat, F. (eds.) Chapter-13, Quantum implications: essays in honour of David Bohm. Taylor & Francis (2012)

  41. Chandler, C., Cohen, L., Lee, C., Scully, M., Wodkiewicz, K.: Quasi-probability distribution for spin-1/2 particles. Found. Phys. 22(7), 867–878 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  42. Adhikary, S., Ravishankar, V.: Quantum logic and non-classicality: an explicit formulation. arXiv arXiv:1710.04371v1 (2017)

  43. Weyl, H.: Quantenmechanik und gruppentheorie. Zeitschrift für Physik 46(1), 1–46 (1927)

    Article  ADS  MATH  Google Scholar 

  44. Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24(3), 379–385 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  45. Wiseman, H.M.: Weak values, quantum trajectories, and the cavity-qed experiment on wave-particle correlation. Phys. Rev. A 65, 032111 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  46. Vaidman, L., Ben-Israel, A., Dziewior, J., Knips, L., WeiĂźl, M., Meinecke, J., Schwemmer, C., Ber, R., Weinfurter, H.: Weak value beyond conditional expectation value of the pointer readings. Phys. Rev. A 96, 032114 (2017)

    Article  ADS  Google Scholar 

  47. Kirkwood, J.G.: Quantum statistics of almost classical assemblies. Phys. Rev. 44, 31–37 (1933)

    Article  ADS  MATH  Google Scholar 

  48. Barut, A.O.: Distribution functions for noncommuting operators. Phys. Rev. 108, 565–569 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Johansen, L.M., Luis, A.: Nonclassicality in weak measurements. Phys. Rev. A 70, 052115 (2004)

    Article  ADS  Google Scholar 

  50. Johansen, L.M.: Nonclassical properties of coherent states. Physics Letters A 329(3), 184–187 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Pan, A.K.: Interference experiment, anomalous weak value, and leggett-garg test of macrorealism. Phys. Rev. A 102, 032206 (2020)

    Article  ADS  Google Scholar 

  52. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  53. Aharonov, Y., Colombo, F., Popescu, S., Sabadini, I., Struppa, D.C., Tollaksen, J.: Quantum violation of the pigeonhole principle and the nature of quantum correlations. Proc. Nat. Acad. Sci. 113(3), 532–535 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Reznik, G., Bagchi, S., Dressel, J., Vaidman, L.: Footprints of quantum pigeons. Phys. Rev. Res. 2, 023004 (2020)

    Article  Google Scholar 

  55. Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Aharonov, Y., Rohrlich, D.: Quantum Paradoxes: Quantum Theory for the Perplexed. John Wiley & Sons (2008)

  57. GĂĽhne, O.: Characterizing entanglement via uncertainty relations. Phys. Rev. Lett. 92, 117903 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Lev Vaidman for illuminating discussions and bringing several relevant works to our notice, and Fabrizio Piacentini for a fruitful discussion. We would like to thank the anonymous referees whose comments have helped to enhance the quality of the manuscript. We thank Rajni Bala for several discussions and helpful suggestions. Sooryansh thanks the Council for Scientific and Industrial Research (Grant no. -09/086 (1278)/2017-EMR-I) for funding his research.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to this work in all respects.

Corresponding author

Correspondence to Sooryansh Asthana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Unit pseudo-projections have at least one negative eigenvalue.

Consider a unit PP, \({\varvec{\Pi }}\), constructed as the symmetrised product of N mutually non-commuting projections (of any ranks) in a Hilbert space of dimension D, as given by,

$$\begin{aligned} {\varvec{\Pi }} = \dfrac{1}{2}(\pi _1 \pi _2\ldots \pi _N + \mathrm {h. c. }). \end{aligned}$$
(58)

Let \(\vert a \rangle ~ (\vert b \rangle )\) be a vector in the null space of \(\pi _1 ~(\pi _N)\) but not in that of \(\pi _N ~(\pi _1)\). Construct the orthogonal basis: \(\{\vert e_1\rangle =\vert a \rangle \), \(\vert e_2\rangle = \vert b\rangle -\langle a \vert b \rangle \vert a\rangle \}\) in the two-dimensional subspace spanned by the vectors. The determinant of the minor of \({\varvec{\Pi }}\) in this two-dimensional basis is evidently negative. Thus, \({\varvec{\Pi }}\) possesses at least one negative eigenvalue. In order to illustrate it, consider a unit PP, \({\varvec{\Pi }}\), constructed as symmetrised product of N mutually non-commuting projections \(\pi _j = \sum _{i_j}|a_{i_j}\rangle \langle a_{i_j}|;~j \in \{1, \ldots , N\}\). Thus,

$$\begin{aligned} {\varvec{\Pi }} = \frac{1}{2}\sum _{i_1 \ldots i_N} \Big (|a^1_{i_1}\rangle \langle a^1_{i_1}|a^2_{i_2}\rangle \langle a^2_{i_2}|\cdots \langle a^{N-1}_{i_{N-1}}|a^N_{i_N}\rangle \langle a^N_{i_N}| +\mathrm{h.c.} \Big ). \end{aligned}$$

Let \(i_1 \in \{1, \ldots , d\}\), where \(d < D\). Since \(\pi _1\) and \(\pi _N\) are non-commuting, one can always find a state \(|a^1_{d+1}\rangle \), lying in the null space of \(\pi _1\), such that \(\pi _N|a^1_{d+1}\rangle \ne 0\). We project \({\varvec{\Pi }}\) in the subspace spanned by \(\{|a^1_d\rangle , |a^1_{d+1}\rangle \}\),

$$\begin{aligned}&\Big (|a^1_d\rangle \langle a^1_d| +|a^1_{d+1}\rangle \langle a^1_{d+1}|\Big ){\varvec{\Pi }}\Big (|a^1_d\rangle \langle a^1_d| +|a^1_{d+1}\rangle \langle a^1_{d+1}|\Big )\nonumber \\ =&\frac{1}{2}\sum _{i_1\ldots i_N}\Big \{|a^1_d\rangle \langle a^1_{i_1}|a^2_{i_2}\rangle \langle a^2_{i_2}|\ldots \langle a^{N-1}_{i_{N-1}}|a^N_{i_N}\rangle \Big (\langle |a^N_{i_N}|a^1_d\rangle \langle a^1_d| +\langle a^N_{i_N}|a^1_{d+1}\rangle \langle a^1_{d+1}|\Big ) + \mathrm{h.c.}\Big \}\nonumber \\ =&\frac{1}{2}|a^1_d\rangle \Big \{\sum _{i_1\ldots i_N}\langle a^1_{i_1}|a^2_{i_2}\rangle \langle a^2_{i_2}|\ldots \langle a^{N-1}_{i_{N-1}}|a^N_{i_N}\rangle \langle a^N_{i_N}|a^1_d\rangle + \mathrm{c.c.}\Big \}\langle a^1_d|\nonumber \\ =&\frac{1}{2}|a^1_d\rangle \Big \{\sum _{i_1\ldots i_N}\langle a^1_{i_1}|a^2_{i_2}\rangle \cdots \langle a^N_{i_{N-1}}|a^N_{i_N}\rangle \langle a^N_{i_N}|a^1_{d+1}\rangle \Big \}\langle a^1_{d+1}| +\mathrm{h.c.}, \end{aligned}$$
(59)

which has a negative determinant, thereby proving that \({\varvec{\Pi }}\) has a negative eigenvalue.

Derivation of coherence witness

In a fixed basis, all the diagonal states are considered to be incoherent and states having nonzero off-diagonal elements are designated as coherent [52]. PPs can act as witnesses for this coherence. To see this, let the state be diagonal in the eigenbasis of \(\sigma _z\). We are interested in the PP, representing a joint outcome of two incompatible observables \({\varvec{\sigma }}\cdot \hat{a}_1\) and \({\varvec{\sigma }}\cdot \hat{a}_2\), which acquires negative values only for states \(\rho = \frac{1}{2} ({1} + {\varvec{\sigma }}.{\varvec{p}})\) having nonzero off-diagonal term. Then, the PP, \({\varvec{\Pi }}_{a_1a_2} = \frac{1}{4} \Big ({1} + \hat{a}_1\cdot \hat{a}_2 + {\varvec{\sigma }}.(\hat{a}_1 + \hat{a}_2)\Big )\), has positive overlap with all diagonal states whenever \((\hat{a}_1 +\hat{a}_2)\) lies in the \(x-y\) plane. Suppose \(\hat{a}_1\cdot \hat{a}_2 = \cos \theta \) and we choose \((\hat{a}_1 + \hat{a}_2) \parallel (\cos \lambda \hat{x} + \sin \lambda \hat{y})\). Then,

$$\begin{aligned} {\varvec{\Pi }}_{a_1a_2} = \frac{1}{2}\cos \frac{\theta }{2}\Big \{ \cos \frac{\theta }{2} + (\cos \lambda \sigma _x + \sin \lambda \sigma _y)\Big \}. \end{aligned}$$
(60)

The expectation value of this operator with the state \(\rho \) is,

$$\begin{aligned} \mathrm{Tr}({\varvec{\Pi }}_{a_1a_2} \rho ) = \frac{1}{2}\cos \frac{\theta }{2} \Big \{\cos \frac{\theta }{2} + (\cos \lambda p_x + \sin \lambda p_y)\Big \}. \end{aligned}$$
(61)

The operator \({\varvec{\Pi }}_{a_1a_2}\), for a proper choice of \(\theta \) and \(\lambda \), has negative overlap for all states with nonzero \(p_x\) and \(p_y\).

Derivation of CHSH inequality

The sum of pseudoprobabilities for CHSH nonlocality is as follows:

$$\begin{aligned}&{\mathcal {P}}(A_1=B_1=B_2)+{\mathcal {P}}(A_2=B_1={\bar{B}}_2). \end{aligned}$$
(62)

Employing dichotomic nature of the observables, we express each pseudoprobability in terms of expectation values of observables. Thus, the following expression results,

$$\begin{aligned} {\mathcal {P}}_\mathrm{NL} \equiv&{\mathcal {P}}(A_1=B_1=B_2)+{\mathcal {P}}(A_2=B_1={\bar{B}}_2)\nonumber \\ =&{\mathcal {P}}(A_1=+1;B_1=+1B_2=+1)+ {\mathcal {P}}(A_1=-1;B_1=-1B_2=-1)\nonumber \\ +&{\mathcal {P}}(A_2=+1;B_1=+1{B}_2=-1)+{\mathcal {P}}(A_2=-1;B_1=-1{B}_2=+1)\nonumber \\ =&\dfrac{1}{8}\Big \langle \big (1+A_1\big )\big (1+\{B_1, B_2\}+B_1+B_2\big )+\big (1-A_1\big )\big (1+\{B_1, B_2\}-B_1-B_2\big )\nonumber \\ +&\big (1+A_2\big )\big (1-\{B_1, B_2\}+B_1-B_2\big )+\big (1-A_2\big )\big (1-\{B_1, B_2\}-B_1+B_2\big )\Big \rangle \nonumber \\ =&\dfrac{1}{4}\Big \langle 2+A_1(B_1+B_2)+A_2(B_1-B_2)\Big \rangle . \end{aligned}$$
(63)

Imposing the nonclassicality criteria, \({\mathcal {P}}_\mathrm{NL}<0\), the CHSH inequality results,

$$\begin{aligned} \langle A_1(B_1+B_2)+A_2(B_1-B_2)\rangle <-2. \end{aligned}$$
(64)

For the following choice of the observables,

$$\begin{aligned}&A_1\equiv {\varvec{\sigma }}_1\cdot \hat{a}_1=\sigma _{1x}; A_2\equiv {\varvec{\sigma }}_1\cdot \hat{a}_2=\sigma _{1y};\nonumber \\&B_1\equiv \frac{\sigma _{2x}+\sigma _{2y}}{\sqrt{2}}; B_2\equiv \frac{\sigma _{2x}-\sigma _{2y}}{\sqrt{2}}, \end{aligned}$$
(65)

the values of the pseudo-probabilities, for two-qubit Werner states, \(\rho = \frac{1}{4}(1-\eta {\varvec{\sigma }}_1\cdot {\varvec{\sigma }}_2)\), are given as below,

$$\begin{aligned}&{\mathcal {P}}(A_1;B_1B_2) ={\mathcal {P}}({\bar{A}}_1;{\bar{B}}_1{\bar{B}}_2)= {\mathcal {P}}(A_2;B_1{\bar{B}}_2) ={\mathcal {P}}({\bar{A}}_1;{\bar{B}}_1B_2) =\dfrac{1}{8}(1-\eta \sqrt{2}). \end{aligned}$$

Thus, all the four pseudoprobabilities turn negative for all the nonlocal Werner states (\(\frac{1}{\sqrt{2}}<\eta \le 1\)), thereby proving that all the weak values also turn negative, i.e. anomalous.

Derivation of linear entanglement inequalities

1.1 Expression of pseudoprojection operator for joint outcomes of two observables

First, we explicitly calculate the expression of PP representing a joint event, in which \({\varvec{\sigma }}\cdot \hat{m}_1\) and \({\varvec{\sigma }}\cdot \hat{m}_2\) both take value \(+1\). The PP is given by the symmetrised rule,

$$\begin{aligned} {\varvec{\Pi }}&=\dfrac{1}{2}\Big \{\dfrac{1}{2}(1+{\varvec{\sigma }}\cdot \hat{m}_1), \dfrac{1}{2}(1+{\varvec{\sigma }}\cdot \hat{m}_2)\Big \} \nonumber \\&=\dfrac{1}{4}\Big (1+\frac{1}{2}\{{\varvec{\sigma }}\cdot \hat{m}_1, {\varvec{\sigma }}\cdot \hat{m}_2\}+{\varvec{\sigma }}\cdot (\hat{m}_1+\hat{m}_2)\Big )\nonumber \\&=\dfrac{1}{4}\Big (1+\hat{m}_1\cdot \hat{m}_2+{\varvec{\sigma }}\cdot \hat{m}_1+{\varvec{\sigma }}\cdot \hat{m}_2\Big ). \end{aligned}$$
(66)

If the included angle between \(\hat{m}_1\) and \(\hat{m}_2\) is given by \(\alpha \), then,

$$\begin{aligned} \hat{m}_1\cdot \hat{m}_2 = \cos \alpha ~ \mathrm{and}~ \hat{m}+\hat{m}_2 = 2\cos \frac{\alpha }{2}\hat{m}. \end{aligned}$$

Here, \(\hat{m}\) is a unit vector parallel to \((\hat{m}_1+\hat{m}_2)\). Plugging in these values in equation (66), we obtain,

$$\begin{aligned} {\varvec{\Pi }}&= \dfrac{1}{4}\Big (2\cos ^2\frac{\alpha }{2}+2\cos \frac{\alpha }{2}{\varvec{\sigma }}\cdot \hat{m}\Big ) \nonumber \\&= \dfrac{1}{2}\cos \frac{\alpha }{2}\Big (\cos \frac{\alpha }{2}+{\varvec{\sigma }}\cdot \hat{m}\Big ). \end{aligned}$$
(67)

We shall thoroughly use this expression to obtain various entanglement inequalities, conditions for discord and coherence witnesses. We start with the derivation of the first linear entanglement inequality.

1.2 Derivation of linear entanglement inequality: I

The sum of pseudoprobabilities for entanglement inequality is as follows:

$$\begin{aligned} {\mathcal {P}}_{E_1} = \sum _{i=1}^2{\mathcal {P}}(a_i=b^{(i)}_1=b^{(i)}_2). \end{aligned}$$

Writing each pseudo-probability in terms of expectation of PP, the following expression results,

$$\begin{aligned} {\mathcal {P}}(a_i = b_1^{(i)}&=b_2^{(i)})={\mathcal {P}}(a_i = +1;b_1^{(i)}=+1b_2^{(i)}=+1)\nonumber \\&\quad +{\mathcal {P}}(a_i =-1; b_1^{(i)}=-1b_2^{(i)}=-1)\nonumber \\&=\dfrac{1}{4}{\cos \frac{\alpha }{2}}\Big \langle (1+{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \frac{\alpha }{2}+{\varvec{\sigma }}_2\cdot \hat{b}_i)+(1-{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \frac{\alpha }{2}-{\varvec{\sigma }}_2\cdot \hat{b}_i)\Big \rangle \nonumber \\&=\dfrac{1}{2}{\cos \frac{\alpha }{2}}\Big \langle \cos \dfrac{\alpha }{2}+{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\Big \rangle . \end{aligned}$$
(68)

Substituting the values of pseudoprobabilities in terms of expectation values of observables, we obtain the following expression,

$$\begin{aligned} {\mathcal {P}}_{E_1} = \dfrac{1}{2}{\cos \frac{\alpha }{2}}\sum _{i=1}^2\big \langle 2\cos \frac{\alpha }{2}+{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\big \rangle . \end{aligned}$$
(69)

Imposing the nonclassicality constraint, \({\mathcal {P}}_{E_1} <0\), the following inequality emerges,

$$\begin{aligned} \sum _{i=1}^2\big \langle 2\cos \frac{\alpha }{2}+{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\big \rangle <0. \end{aligned}$$
(70)

The range of \(\alpha \) is fixed since we demand all the separable states to violate the inequality. The maximum value of \(\sum _{i=1}^2\langle {\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i \rangle \) for a separable state is 1. To show this, consider the two-qubit pure separable state \(\rho = \dfrac{1}{4}(1+\sigma _{1z})(1+\sigma _{2z})\). Then,

$$\begin{aligned}&\sum _{i=1}^2\big \langle 2\cos \frac{\alpha }{2}+{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\big \rangle _{\rho }\nonumber \\ =&2\cos \frac{\alpha }{2}+a_{1z}b_{1z}+a_{2z}b_{2z} \ge -1+2\cos \frac{\alpha }{2}. \end{aligned}$$
(71)

Note that, \(\hat{a}_1\perp \hat{a}_2\) and \(\hat{b}_1\perp \hat{b}_2\). It implies that \((a_{1z}b_{1z}+a_{2z}b_{2z})\) is upper bounded by 1 in magnitude. Thus, in order that the inequality (70) gets violated by all the separable states, \(1 \le 2\cos \frac{\alpha }{2}< 2\), which, in turn, implies that \( 0\le \alpha <\frac{2\pi }{3}\).

In terms of weak values, the sum of pseudoprobabilities, \({\mathcal {P}}_{E_1}\), can be written as,

(72)

For the special choice of observables,

$$\begin{aligned} {\varvec{\sigma }}_1\cdot \hat{a}_1=\sigma _{1x}; {\varvec{\sigma }}_1\cdot \hat{a}_2=\sigma _{1y}; {\varvec{\sigma }}_2\cdot \hat{b}_1=\sigma _{2x}; {\varvec{\sigma }}_2\cdot \hat{b}_2=\sigma _{2y}, \end{aligned}$$
(73)

and for the \(2\otimes 2\) Werner states, \(\rho = \dfrac{1}{4}(1-\eta {\varvec{\sigma }}_1\cdot {\varvec{\sigma }}_2)\), the pseudoprobabilities and the inequality assumes the following form,

$$\begin{aligned}&{\mathcal {P}}(a_1 = +1;b_1^{(1)}=+1b_2^{(1)}=+1)= {\mathcal {P}}(a_1 =-1; b_1^{(1)}=-1b_2^{(1)}=-1) \nonumber \\ =&{\mathcal {P}}(a_2 = +1;b_1^{(2)}=+1b_2^{(2)}=+1)= {\mathcal {P}}(a_2 =-1; b_1^{(2)}=-1b_2^{(2)}=-1) \nonumber \\ =&\dfrac{1}{4}\cos \dfrac{\alpha }{2} \Big (\cos \dfrac{\alpha }{2}-\eta \Big ) \nonumber \\&2\cos \dfrac{\alpha }{2}+\langle \sigma _{1x}\sigma _{2x}+\sigma _{1y}\sigma _{2y}\rangle <0. \end{aligned}$$
(74)

We consider a particular value of \(\alpha = \dfrac{2\pi }{3}\). For this value, all the four pseudoprobabilities are equal to the following value,

$$\begin{aligned}&{\mathcal {P}}(a_1 = +1;b_1^{(1)}=+1b_2^{(1)}=+1)= {\mathcal {P}}(a_1 =-1; b_1^{(1)}=-1b_2^{(1)}=-1)\nonumber \\ =&{\mathcal {P}}(a_2 = +1;b_1^{(2)}=+1b_2^{(2)}=+1)= {\mathcal {P}}(a_2 =-1; b_1^{(2)}=-1b_2^{(2)}=-1)\nonumber \\ =&\dfrac{1}{8}\Big (\dfrac{1}{2}-\eta \Big ). \end{aligned}$$
(75)

The Werner states are detected to be entangled in the range \(\eta \in \Big (\dfrac{1}{2}, 1\Big ]\) by the inequality (41), which implies that all the four pseudoprobabilities will be negative. This, in turn, implies that all the four weak values are negative, i.e. anomalous.

1.3 Derivation of linear entanglement inequality: II

The sum of pseudoprobabilities for entanglement inequality is as follows:

$$\begin{aligned} {\mathcal {P}}_{E_2} = \sum _{i=1}^3{\mathcal {P}}(a_i=b^{(i)}_1=b^{(i)}_2). \end{aligned}$$

The pseudoprobabilities, as before, can be written as expectation values of Pauli operators as follows,

$$\begin{aligned} {\mathcal {P}}(a_i = b_1^{(i)}=b_2^{(i)})&=\dfrac{1}{4}\cos \frac{\alpha }{2}\Big \langle (1+{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \frac{\alpha }{2}+{\varvec{\sigma }}_2\cdot \hat{b}_i)\nonumber \\&\quad +(1-{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \frac{\alpha }{2}-{\varvec{\sigma }}_2\cdot \hat{b}_i)\Big \rangle \nonumber \\&=\dfrac{1}{2}{\cos \frac{\alpha }{2}}\Big \langle \cos \dfrac{\alpha }{2}+{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\Big \rangle . \end{aligned}$$
(76)

Substituting the values of pseudoprobabilities in terms of expectation values of observables, we obtain the following expression,

$$\begin{aligned} {\mathcal {P}}_{E_2} =\dfrac{1}{2} {\cos \frac{\alpha }{2}}\sum _{i=1}^3\big \langle 2\cos \frac{\alpha }{2}+{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\big \rangle . \end{aligned}$$
(77)

The nonclassicality condition, \({\mathcal {P}}_{E_2}< 0\), yields the following inequality,

$$\begin{aligned} \sum _{i=1}^3\big \langle 2\cos \frac{\alpha }{2}+{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\big \rangle <0. \end{aligned}$$
(78)

The range of \(\alpha \) is fixed since we demand all the separable states to violate the inequality (78). The maximum value of \(\sum _{i=1}^3\langle {\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i \rangle \) for a separable state is 1. To show this, consider the two-qubit pure separable state \(\rho = \dfrac{1}{4}(1+\sigma _{1z})(1+\sigma _{2z})\). Then,

$$\begin{aligned}&\sum _{i=1}^3\big \langle 3\cos \frac{\alpha }{2}+{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\big \rangle _{\rho }\nonumber \\ =&3\cos \frac{\alpha }{2}+a_{1z}b_{1z}+a_{2z}b_{2z}+a_{3z}b_{3z} \ge -1+3\cos \frac{\alpha }{2}. \end{aligned}$$
(79)

Thus, in order that the inequality gets violated by all the separable states, \(1 \le 3\cos \frac{\alpha }{2}< 3\), which, in turn, implies that \( 0\le \alpha <\mathrm{arccos}\big (-\frac{7}{9}\big )\).

In terms of weak values, the sum of pseudoprobabilities \({\mathcal {P}}_{E_2}\) can be written as,

(80)

For the special choices of observables,

$$\begin{aligned} {\varvec{\sigma }}_1\cdot \hat{a}_1&=\sigma _{1x}; {\varvec{\sigma }}_1\cdot \hat{a}_2=\sigma _{1y}; {\varvec{\sigma }}_1\cdot \hat{a}_3=\sigma _{1z}; {\varvec{\sigma }}_2\cdot \hat{b}_1=\sigma _{2x}; {\varvec{\sigma }}_2\cdot \hat{b}_2\nonumber \\&=\sigma _{2y}, {\varvec{\sigma }}_2\cdot \hat{b}_3=\sigma _{2z}, \end{aligned}$$
(81)

and for the \(2\otimes 2\) werner states \(\rho = \dfrac{1}{4}(1-\eta {\varvec{\sigma }}_1\cdot {\varvec{\sigma }}_2)\), the pseudoprobabilities and the inequality assume the following form,

$$\begin{aligned}&{\mathcal {P}}(a_1 = +1;b_1^{(1)}=+1b_2^{(1)}=+1)= {\mathcal {P}}(a_1 =-1; b_1^{(1)}=-1b_2^{(1)}=-1)\nonumber \\ =&{\mathcal {P}}(a_2 = +1;b_1^{(2)}=+1b_2^{(2)}=+1)= {\mathcal {P}}(a_2 =-1; b_1^{(2)}=-1b_2^{(2)}=-1)\nonumber \\ =&{\mathcal {P}}(a_3 = +1;b_1^{(3)}=+1b_2^{(3)}=+1)={\mathcal {P}}(a_3 =-1; b_1^{(3)}=-1b_2^{(3)}=-1)\nonumber \\ =&\dfrac{1}{4}\cos \dfrac{\alpha }{2} \Big (\cos \dfrac{\alpha }{2}-\eta \Big ) \nonumber \\&3\cos \dfrac{\alpha }{2}+\langle \sigma _{1x}\sigma _{2x}+\sigma _{1y}\sigma _{2y}+\sigma _{1z}\sigma _{2z}\rangle <0. \end{aligned}$$
(82)

We consider the case \(\alpha =\mathrm{arccos} \Big (-\dfrac{7}{9}\Big )\), then all the six pseudoprobabilities are equal to the following value,

$$\begin{aligned}&{\mathcal {P}}(a_1 = +1;b_1^{(1)}=+1b_2^{(1)}=+1)= {\mathcal {P}}(a_1 =-1; b_1^{(1)}=-1b_2^{(1)}=-1)\nonumber \\ =&{\mathcal {P}}(a_2 = +1;b_1^{(2)}=+1b_2^{(2)}=+1)= {\mathcal {P}}(a_2 =-1; b_1^{(2)}=-1b_2^{(2)}=-1)\nonumber \\ =&{\mathcal {P}}(a_3 = +1;b_1^{(3)}=+1b_2^{(3)}=+1)= {\mathcal {P}}(a_3 =-1; b_1^{(3)}=-1b_2^{(3)}=-1)\nonumber \\ =&\dfrac{1}{8}\Big (\dfrac{1}{2}-\eta \Big ). \end{aligned}$$
(83)

The Werner states are detected to be entangled in the range \(\eta \in \Big (\dfrac{1}{3}, 1\Big ]\) by the inequality (44), which implies that all the six pseudoprobabilities will be negative. This, in turn, implies that all the six weak values are negative, i.e. anomalous.

Derivation of nonlinear entanglement inequalities

1.1 Derivation of nonlinear entanglement inequality: I

The sum of pseudoprobabilities for entanglement inequality is as follows:

$$\begin{aligned} {\mathcal {S}}_1 = \sum _{i=1}^2\mathcal {P}(a_i=b^{(i)}_1=b^{(i)}_2)\mathcal {P}(\overline{a}_i =b^{(i)}_1=b^{(i)}_2). \end{aligned}$$
(84)

As before,

$$\begin{aligned} {\mathcal {P}}(a_i = b_1^{(i)}=b_2^{(i)})&=\dfrac{1}{4}{\cos \frac{\alpha }{2}}\Big \langle (1+{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \frac{\alpha }{2}+{\varvec{\sigma }}_2\cdot \hat{b}_i)\nonumber \\&\quad +(1-{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \frac{\alpha }{2}-{\varvec{\sigma }}_2\cdot \hat{b}_i)\Big \rangle \nonumber \\ =&\dfrac{1}{2}{\cos \frac{\alpha }{2}}\Big \langle \cos \dfrac{\alpha }{2}+{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\Big \rangle , \end{aligned}$$
(85)

and,

$$\begin{aligned} {\mathcal {P}}({\bar{a}}_i = b_1^{(i)}=b_2^{(i)})&=\dfrac{1}{4}{\cos \frac{\alpha }{2}}\Big \langle (1-{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \frac{\alpha }{2}+{\varvec{\sigma }}_2\cdot \hat{b}_i)\Big )\nonumber \\&\quad +\dfrac{1}{4}\Big ((1+{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \frac{\alpha }{2}-{\varvec{\sigma }}_2\cdot \hat{b}_i)\Big \rangle \nonumber \\ =&\dfrac{1}{2}{\cos \frac{\alpha }{2}}\Big \langle \cos \dfrac{\alpha }{2}-{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\Big \rangle . \end{aligned}$$
(86)

Plugging in the expressions from equations (85) and (86) in Eq. (84),

$$\begin{aligned} {\mathcal {S}}_1 =\Big (\dfrac{1}{2}{\cos \frac{\alpha }{2}}\Big )^2\sum _{i=1}^2\Big (2\cos ^2\dfrac{\alpha }{2}-\langle {\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\rangle ^2\Big ). \end{aligned}$$
(87)

Imposing the non-classicality condition, \({\mathcal {S}}_1 < 0\), we arrive at the inequality,

$$\begin{aligned} 2\cos ^2\dfrac{\alpha }{2} -\sum _{i=1}^2 \langle {\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\rangle ^2 <0. \end{aligned}$$
(88)

The range of \(\alpha \) can be fixed by demanding all the separable states to violate this inequality. We can consider the separable state, without any loss of generality, to be \(\rho _s=\dfrac{1}{4}(1+\sigma _{1z})(1+\sigma _{2z})\). For this state, the LHS of the inequality (88) assumes the following form,

$$\begin{aligned} 2\cos ^2\dfrac{\alpha }{2} - \langle a_{1z}b_{1z}\rangle ^2-\langle a_{2z}b_{2z}\rangle ^2\ge 2\cos ^2\dfrac{\alpha }{2} - 1. \end{aligned}$$
(89)

The second step follows as, \(\hat{a}_1\perp \hat{a}_2\) and \(\hat{b}_1\perp \hat{b}_2\). In order that all the separable states violate this inequality, \( 1\le 2\cos ^2\dfrac{\alpha }{2} < 2\), which, in turn, implies that, \(0< \alpha \le \frac{\pi }{2}\). In terms of weak values,

(90)

1.2 Derivation of nonlinear entanglement inequality: II

The sum of pseudoprobabilities for entanglement inequality is as follows:

$$\begin{aligned} {\mathcal {S}}_2 = \sum _{i=1}^3\mathcal {P}(a_i=b^{(i)}_1=b^{(i)}_2)\mathcal {P}(\overline{a}_i =b^{(i)}_1=b^{(i)}_2). \end{aligned}$$
(91)

As before,

$$\begin{aligned} {\mathcal {P}}(a_i = b_1^{(i)}=b_2^{(i)})&=\dfrac{1}{4}{\cos \frac{\alpha }{2}}\Big \langle (1+{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \frac{\alpha }{2}+{\varvec{\sigma }}_2\cdot \hat{b}_i)\nonumber \\&\quad +(1-{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \frac{\alpha }{2}-{\varvec{\sigma }}_2\cdot \hat{b}_i)\Big \rangle \nonumber \\ =&\dfrac{1}{2}{\cos \frac{\alpha }{2}}\Big \langle \cos \dfrac{\alpha }{2}+{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\Big \rangle , \end{aligned}$$
(92)

and,

$$\begin{aligned} {\mathcal {P}}({\bar{a}}_i = b_1^{(i)}=b_2^{(i)})&=\dfrac{1}{4}{\cos \frac{\alpha }{2}}\Big \langle (1-{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \frac{\alpha }{2}+{\varvec{\sigma }}_2\cdot \hat{b}_i)\nonumber \\&\quad +(1+{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \frac{\alpha }{2}-{\varvec{\sigma }}_2\cdot \hat{b}_i)\Big \rangle \nonumber \\ =&\dfrac{1}{2}{\cos \frac{\alpha }{2}}\Big \langle \cos \dfrac{\alpha }{2}-{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\Big \rangle . \end{aligned}$$
(93)

Imposing the non-classicality condition, \({\mathcal {S}}_2 < 0\), we arrive at the inequality,

$$\begin{aligned} 3\cos ^2\dfrac{\alpha }{2} -\sum _{i=1}^3 \langle {\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\rangle ^2 <0. \end{aligned}$$
(94)

The range of \(\alpha \) can be fixed by demanding all the separable states to violate this inequality. We can consider the separable state, without any loss of generality, to be \(\rho _s=\dfrac{1}{4}(1+\sigma _{1z})(1+\sigma _{2z})\). For this state, the LHS of the inequality (88) assumes the following form,

$$\begin{aligned} 3\cos ^2\dfrac{\alpha }{2} - \langle a_{1z}b_{1z}\rangle ^2-\langle a_{2z}b_{2z}\rangle ^2-\langle a_{3z}b_{3z}\rangle ^2\ge 3\cos ^2\dfrac{\alpha }{2} - 1. \end{aligned}$$
(95)

The second step follows as \(\hat{a}_1\perp \hat{a}_2 \perp \hat{a}_3\) and \(\hat{b}_1\perp \hat{b}_2 \perp \hat{b}_3\). In order that all the separable states violate this inequality \( 1\le 3\cos ^2\dfrac{\alpha }{2} < 3\), which, in turn, implies \(0< \alpha \le \frac{\pi }{2}\).

1.3 Proof of nonlinear entanglement inequality: III

The sum of pseudoprobabilities for entanglement inequality is as follows:

$$\begin{aligned} {\mathcal {S}}_3= & {} \sum _{i=1}^3 \Big [\mathcal {P}(a_i = b^{(i)}_1 = b^{(i)}_2) +\dfrac{1}{2}\Big \{ P(a_i)\mathcal {P}(\overline{a}^{(i)}_1, \overline{a}^{(i)}_2) \nonumber \\+ & {} P(\overline{a}_i)\mathcal {P}(a^{(i)}_1, a^{(i)}_2) + P(b_i)\mathcal {P}(\overline{b}^{(i)}_1, \overline{b}^{(i)}_2) \nonumber \\+ & {} P(\overline{b}_i)\mathcal {P}(b^{(i)}_1, b^{(i)}_2) + P(a_i)\mathcal {P}(\overline{b}^{(i)}_1, \overline{b}^{(i)}_2) \nonumber \\+ & {} P(\overline{a}_i)\mathcal {P}(b^{(i)}_1, b^{(i)}_2) + \mathcal {P}(\overline{a}^{(i)}_1, \overline{a}^{(i)}_2) P(b_i) \nonumber \\+ & {} \mathcal {P}(a^{(i)}_1, a^{(i)}_2) P(\overline{b}_i)\Big \}\Big ]. \end{aligned}$$
(96)

We next substitute the values of all the pseudoprobabilities as expectation values of corresponding PP operators as follows:

$$\begin{aligned} {\mathcal {S}}_3= & {} \sum _{i=1}^3 \dfrac{1}{2}\cos \frac{\alpha }{2}\Big (\cos \frac{\alpha }{2}+{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\Big ) +\dfrac{1}{2}\Big \{\dfrac{1}{4}\cos \frac{\alpha }{2}(1+{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \dfrac{\alpha }{2}-{\varvec{\sigma }}_1\cdot \hat{a}_i) \nonumber \\+ & {} \dfrac{1}{4}\cos \frac{\alpha }{2}(1-{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \dfrac{\alpha }{2}+{\varvec{\sigma }}_1\cdot \hat{a}_i) + \dfrac{1}{4}\cos \frac{\alpha }{2}(1+{\varvec{\sigma }}_2\cdot \hat{b}_i)(\cos \dfrac{\alpha }{2}-{\varvec{\sigma }}_2\cdot \hat{b}_i) \nonumber \\+ & {} \dfrac{1}{4}\cos \frac{\alpha }{2}(1-{\varvec{\sigma }}_2\cdot \hat{b}_i)(\cos \dfrac{\alpha }{2}+{\varvec{\sigma }}_2\cdot \hat{b}_i) + \dfrac{1}{4}\cos \frac{\alpha }{2}(1+{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \dfrac{\alpha }{2}-{\varvec{\sigma }}_2\cdot \hat{b}_i) \nonumber \\+ & {} \dfrac{1}{4}\cos \frac{\alpha }{2}(1-{\varvec{\sigma }}_2\cdot \hat{a}_i)(\cos \dfrac{\alpha }{2}+{\varvec{\sigma }}_2\cdot \hat{b}_i) + \dfrac{1}{4}\cos \frac{\alpha }{2}(\cos \dfrac{\alpha }{2}-{\varvec{\sigma }}_1\cdot \hat{a}_i)(1+{\varvec{\sigma }}_2\cdot \hat{b}_i) \nonumber \\+ & {} \dfrac{1}{4}\cos \frac{\alpha }{2}(\cos \dfrac{\alpha }{2}+{\varvec{\sigma }}_1\cdot \hat{a}_i)(1-{\varvec{\sigma }}_2\cdot \hat{b}_i) \Big \}\nonumber \\= & {} \dfrac{1}{2}\cos \frac{\alpha }{2}\Big ( 9\cos \dfrac{\alpha }{2}+\sum _{i=1}^3{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i-\dfrac{1}{2}\langle {\varvec{\sigma }}_1\cdot \hat{a}_i+{\varvec{\sigma }}_2\cdot \hat{b}_i\rangle ^2\Big ). \end{aligned}$$
(97)

Imposing the nonclassicality condition—\( {\mathcal {S}}_3 <0\), the following entanglement inequality emerges,

$$\begin{aligned} 9\cos \dfrac{\alpha }{2}+\sum _{i=1}^3\Big ({\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i-\dfrac{1}{2}\langle {\varvec{\sigma }}_1\cdot \hat{a}_i+{\varvec{\sigma }}_2\cdot \hat{b}_i\rangle ^2\Big )<0. \end{aligned}$$
(98)

We demand that all the separable states should violate this inequality. It fixes the range of \(\alpha \) to be \( 0 < \alpha \le \mathrm{arccos}\Big (-\frac{79}{81}\Big )\).

Proof of condition for quantum discord

The pseudoprobabilities are as follows:

$$\begin{aligned} {\mathcal {P}}_D ^{i}= & {} {\mathcal {P}}(a_i= b^{(i)}_1=b^{(i)}_2) + P(a_i) {\mathcal {P}}(\overline{b}^{(i)}_1\overline{b}^{(i)}_2) + P(\overline{a}_i) {\mathcal {P}}(b^{(i)}_1 b^{(i)}_2) ; i=1, 2.\nonumber \\ \end{aligned}$$
(99)

Note that the eigenbasis of \(a_i \equiv {\varvec{\sigma }}_1\cdot \hat{a}_i\) is the same as that of the reduced density matrix of the first subsystem. We rewrite the pseudo-probabilities in terms of expectation values of Pauli observables as below,

$$\begin{aligned} {\mathcal {P}}(a_i = b_1^{(i)}=b_2^{(i)})&=\dfrac{1}{4}{\cos \frac{\alpha }{2}}\Big \langle (1+{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \frac{\alpha }{2}+{\varvec{\sigma }}_2\cdot \hat{b}_i)\nonumber \\&\quad +(1-{\varvec{\sigma }}_1\cdot \hat{a}_i)(\cos \frac{\alpha }{2}-{\varvec{\sigma }}_2\cdot \hat{b}_i)\Big \rangle \nonumber \\&=\dfrac{1}{2}{\cos \frac{\alpha }{2}}\Big \langle \cos \dfrac{\alpha }{2}+{\varvec{\sigma }}_1\cdot \hat{a}_i{\varvec{\sigma }}_2\cdot \hat{b}_i\Big \rangle , \end{aligned}$$
(100)

and,

$$\begin{aligned}&P(a_i) {\mathcal {P}}(\overline{b}_1^{(i)}\overline{b}_2^{(i)})+P(\overline{a}_i) {\mathcal {P}}(b^{(i)}_1 b^{(i)}_2)\nonumber \\&\quad =\dfrac{1}{4}{\cos \frac{\alpha }{2}}\Big \{(1+\langle {\varvec{\sigma }}_1\cdot \hat{a}_i\rangle )(\cos \frac{\alpha }{2}-\langle {\varvec{\sigma }}_2\cdot \hat{b}_i\rangle ) +{\cos \frac{\alpha }{2}}(1-\langle {\varvec{\sigma }}_1\cdot \hat{a}_i\rangle )(\cos \frac{\alpha }{2}+\langle {\varvec{\sigma }}_2\cdot \hat{b}_i\rangle )\Big \}\nonumber \\&\quad =\dfrac{1}{2}{\cos \frac{\alpha }{2}}\Big (\cos \dfrac{\alpha }{2}-\langle {\varvec{\sigma }}_1\cdot \hat{a}_i\rangle \langle {\varvec{\sigma }}_2\cdot \hat{b}_i\rangle \Big ). \end{aligned}$$
(101)

Thus,

$$\begin{aligned} {\mathcal {P}}_D ^{i}= & {} {\mathcal {P}}(a_i= b^{(i)}_1=b^{(i)}_2) + P(a_i) {\mathcal {P}}(\overline{b}^{(i)}_1\overline{b}^{(i)}_2) + P(\overline{a}_i) {\mathcal {P}}(b^{(i)}_1 b^{(i)}_2) \nonumber \\\equiv & {} \lambda \Big \{(16\lambda + 2\langle {\varvec{\sigma }}_{1}\cdot \hat{a}_i{\varvec{\sigma }}_{2}\cdot \hat{b}_i\rangle - 2 \langle {\varvec{\sigma }}_{1}\cdot \hat{a}_i\rangle \langle {\varvec{\sigma }}_{2}\cdot \hat{b}_i\rangle \Big \}, \end{aligned}$$
(102)

where \(\lambda = \dfrac{1}{4}\cos \dfrac{\alpha }{2}.\) The two-qubit states having zero discord from \({\mathcal {D}}^{1\rightarrow 2}\) are of the following form:

$$\begin{aligned} \rho = \sum _{i}p_i|\phi _i\rangle \langle \phi _i|\otimes \rho _{2i}. \end{aligned}$$
(103)

Without any loss of generality, we may assume \(|\phi _1\rangle = |0\rangle \) and \(|\phi _2\rangle = |1\rangle \), where \(|0\rangle (|1\rangle )\) are eigenvalues of \(\sigma _{1z}\) with eigenvalues \(+1(-1)\). Let \(\rho _{2i} = \dfrac{1}{2}(1+{\varvec{\sigma }}_2\cdot \hat{c}_i)\). Thus, it is quite evident that all the correlation terms in equation (103) have the form \(\sigma _{1z}{\varvec{\sigma }}_2\cdot \hat{c}_i\) and the local terms have the form \(\sigma _{1z}\) and \({\varvec{\sigma }}_2\cdot \hat{c}_i\). Thus, in Eq. (102), if we choose \(\hat{a}_1 =\hat{z}\) and \(\hat{a}_2 = \hat{x}\) (say), only \({\mathcal {P}}^1_D\) turns negative and \({\mathcal {P}}^2_D\) is always non-negative for any value of \(\alpha \) and any choice of \(\hat{b}_1\) and \(\hat{b}_2\) for a state of the form (103).

In order to show that there exist discordant states for which both the pseudoprobabilities, \({\mathcal {P}}_D^1\) and \({\mathcal {P}}_D^2\), are negative, consider the two-qubit Werner states \(\rho _W = \frac{1}{4}(1-\alpha {\varvec{\sigma }}_1\cdot {\varvec{\sigma }}_2)\). The non-negativity of eigenvalues of \(\rho _W\) demands that \(\alpha \in \Big [-\dfrac{1}{3}, 1\Big ]\). For any nonzero value of \(\alpha \), \(\rho _W\) has nonzero discord [14]. If we choose, \(\hat{a}_1 = \hat{x}, \hat{a}_2 = \hat{y}\) and \(\hat{b}_1 = \hat{x}, \hat{b}_2 = \hat{y}\), both the pseudoprobabilities, \({\mathcal {P}}^1_D\) and \({\mathcal {P}}_D^2\), acquire negative values for some value of \(\alpha \), which proves our claim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asthana, S., Ravishankar, V. Weak measurements, non-classicality and negative probability. Quantum Inf Process 20, 350 (2021). https://doi.org/10.1007/s11128-021-03289-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03289-5

Keywords

Navigation