Skip to main content
Log in

The rational approximations of the unitary groups

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper is to investigate the rational approximation of the unitary groups. Specially, based on the Household decomposition we prove that the rational unitary subgroup is dense in the complex unitary group. Moreover, its random approximate property is characterized by the natural Harr measure, which can be used to obtain random unitary matrix. Our simulation shows that these results may be applied to approximate quantum computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Itzykson, C., Nauenberg, M.: Unitary groups: representations and decompostions. Rev. Mod. Phys. 38(1), 95–120 (1966)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N.H., Shor, P.W., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  3. Deutsch, D.: Quantum-theory, the Church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Grover, L.K.: Quantum computer can search arbitarily large databases by a single querry. Phys. Rev. Lett. 79, 4709–4712 (1997)

    Article  ADS  Google Scholar 

  6. Chuang, I.L., Gershenfeld, N., Kubinec, M.: Experimental implementation of fast quantum searching. Phys. Rev. Lett. 80, 3408–3411 (1998)

    Article  ADS  Google Scholar 

  7. Jones, J.A., Mosca, M., Hansen, R.H.: Implementation of a quantum search algorithm on a quantum computer. Nature 393, 344–346 (1998)

    Article  ADS  Google Scholar 

  8. Yoran, N., Short, A.J.: Classical simulability and the significance of modular exponentiation in Shor’s algorithm. Phys. Rev. A 76, 060302 (2007)

    Article  ADS  Google Scholar 

  9. Browne, D.E.: Efficient classical simulation of the quantum Fourier transform. New J. Phys. 9, 146 (2007)

    Article  ADS  Google Scholar 

  10. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  11. Householder, A.S.: Principles of Numerical Analysis. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  12. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994)

    Article  ADS  Google Scholar 

  13. Lovett, N.B., Cooper, S., Everitt, M., Trevers, M., Kendon, V.: Universal quantum computation using the discrete-time quantum walk. Phys. Rev. A 81, 042330 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  14. Thibault, Y., Sugimotob, A., Kenmochia, Y.: 3D discrete rotations using hinge angles. Theor. Comput. Sci. 412, 1378–1391 (2011)

    Article  MATH  Google Scholar 

  15. Ivanov, P.A., Kyoseva, E.S., Vitanov, N.V.: Engineering of arbitrary \(U(N)\) transformations by quantum householder reflections. Phys. Rev. A 74, 022323 (2006)

    Article  ADS  Google Scholar 

  16. Cassels, J.W.S.: An Introduction to Diophantine Approximations. Cambridge University Press, Cambridge (1953)

    Google Scholar 

  17. Fraikin, C., Nesterov, Y., Van Dooren, P.: Optimizing the coupling between two isometric projections of matrices. SIAM J. Matrix Anal. Appl. 30, 324–345 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Humke, P.D., Krajewski, L.L.: A characterization of circles which contain rational points. Am. Math. Mon. 86, 287–290 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hoffman, A.J., Wielandt, W.: The variation of the spectrum. Duke Math. J. 20, 37–39 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bhatia, R., Davis, C.: A bound for the spectral variation of a unitary operator. Lin. Alg. Its Appl. 15, 71–76 (1984)

    MathSciNet  MATH  Google Scholar 

  21. Elsner, L., He, C.: Perturbation and interlace theorems for the unitary eigenvalue problem. Lin. Alg. Its Appl. 188(189), 207–229 (1993)

    Article  MathSciNet  Google Scholar 

  22. Bourgade, P., Hughes, C.P., Nikeghbali, A.: The characteristic polynomial of a random unitary matrix: a probabilistic approach. Duke Math. J. 145(1), 45–69 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bini, D.A., Eidelman, Y., Gohberg, I., Gemignani, L.: Fast QR eigenvalue algorithms for hessenberg matrices which are rank-one perturbations of unitary matrices. SIAM J. Matrix Anal. Appl. 29, 566–585 (2007)

    Article  MathSciNet  Google Scholar 

  24. Paige, C.C.: A useful form of unitary matrix obtained from any sequence of unit 2-norm \(N\)-vectors. SIAM J. Matrix Anal. Appl. 312, 565–583 (2009)

    Article  MathSciNet  Google Scholar 

  25. Keating, J.P., Snaith, N.C.: Random matrix theory and \(z(1/2+it)\). Commun. Math. Phys. 214, 57–89 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Zyczkowski, K., Kus, M.: Random unitary matrices. J. Phys. A Math. Gen. 27, 4235 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  27. Mezzadri, F.: How to generate random matrices from the classical compact groups. Notices AMS 54, 592–604 (2007)

    MathSciNet  MATH  Google Scholar 

  28. Valiant, L.: Quantum circuits that can be simulated classically in polynomial time. SIAM J. Comput. 31, 1229–1254 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  29. Terhal, B.M., DiVincenzo, D.P.: Classical simulation of noninteracting-fermion quantum circuits. Phys. Rev. A 65, 032325 (2002)

    Article  ADS  Google Scholar 

  30. Jozsa, R., Miyake, A.: Matchgates and classical simulation of quantum circuits. Proc. R. Soc. A 464, 3089–3106 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Knill, E.: Fermionic linear optics and matchgates, http://www.arXiv.org/abs/quant-ph/0108033, (2001)

  32. Bravyi, S.: Lagrangian representation for fermionic linear optics. Quant. Inf. Comp. 5, 216–238 (2005)

    MathSciNet  MATH  Google Scholar 

  33. Bravyi, S.: Contraction of matchgate tensor networks on nonplanar graphs. Contemp. Math. 482, 179–211 (2009)

    Article  MathSciNet  Google Scholar 

  34. Liebeck, H., Osborne, A.: The generation of all rational orthogonal matrices. Am. Math. Mon. 98, 131–133 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 11226336, 61003287, 61170272, 61272514), the Fundamental Research Funds for the Central Universities (Nos. SWJTU11BR174, BUPT2012RC0221), the Specialized Research Fund for the Doctoral Program of Higher Education (20100005120002), the Fok Ying Tong Education Foundation (No. 131067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Xing Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, MX., Deng, Y., Chen, XB. et al. The rational approximations of the unitary groups. Quantum Inf Process 12, 3149–3166 (2013). https://doi.org/10.1007/s11128-013-0588-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0588-7

Keywords

Navigation