Skip to main content
Log in

Truncations of Random Unitary Matrices Drawn from Hua-Pickrell Distribution

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

Let U be a random unitary matrix drawn from the Hua-Pickrell distribution \(\mu _{\textrm{U}(n+m)}^{(\delta )}\) on the unitary group \(\textrm{U}(n+m)\). We show that the eigenvalues of the truncated unitary matrix \([U_{i,j}]_{1\le i,j\le n}\) form a determinantal point process \(\mathscr {X}_n^{(m,\delta )}\) on the unit disc \(\mathbb {D}\) for any \(\delta \in \mathbb {C}\) satisfying \(\textrm{Re}\,\delta >-1/2\). We also prove that the limiting point process taken by \(n\rightarrow \infty \) of the determinantal point process \(\mathscr {X}_n^{(m,\delta )}\) is always \(\mathscr {X}^{[m]}\), independent of \(\delta \). Here \(\mathscr {X}^{[m]}\) is the determinantal point process on \(\mathbb {D}\) with weighted Bergman kernel

$$\begin{aligned} \begin{aligned} K^{[m]}(z,w)=\frac{1}{(1-z{\overline{w}})^{m+1}} \end{aligned} \end{aligned}$$

with respect to the reference measure \(d\mu ^{[m]}(z)=\frac{m}{\pi }(1-|z|)^{m-1}d\sigma (z)\), where \(d\sigma (z)\) is the Lebesgue measure on \(\mathbb {D}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bourgade, P.: A Propos des Matrices aléatoires et des Fonctions L. Thesis, ENST, Paris (2009)

  3. Borodin, A.: Determinantal Point Processes. Oxford Univ. Press, Oxford, Oxford Handbook of Random Matrix Theory (2011)

    MATH  Google Scholar 

  4. Borodin, A., Olshanski, G.: Infinite random matrices and ergodic measures. Commun. Math. Phys. 223, 87–123 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bufetov, A.I., Qiu, Y.: Determinantal point processes associated with Hilbert spaces of holomorphic functions. Commun. Math. Phys. 351, 1–44 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bourgade, P., Nikeghbali, A., Rouault, A.: Ewens measures on compact groups and hypergeometric kernels. In: Séminaire de Probabilités XLIII, Lecture Notes in Math., 2006, Springer, Berlin pp. 351-377 (2011)

  7. Brody, T.A., Flores, J., French, J.B., Mello, P.A., Pandey, A., Wong, S.S.M.: Random-matrix physics: spectrum and strength fluctuations. Rev. Modern Phys. 53, 385–479 (1981)

    Article  MathSciNet  Google Scholar 

  8. Dyson, F.J.: Statistical theory of the energy levels of complex systems I. J. Math. Phys. 3, 140–156 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dyson, F.J.: Statistical theory of the energy levels of complex systems II. J. Math. Phys. 3, 157–165 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dyson, F.J.: Statistical theory of the energy levels of complex systems III. J. Math. Phys. 3, 166–175 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dyson, F.J.: The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, 1199–1215 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Daley, D.J., Vere-Jones, D.: An introduction to the theory of point processes. Vol. II. General theory and structure, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  13. Forrester, P.J.: Log-gases and Random Matrices. London Mathematical Society Monographs Series, 34. Princeton University Press, Princeton, NJ (2010)

    Google Scholar 

  14. Forrester, P.J., Witte, N.S.: Gap probabilities in the finite and scaled Cauchy random matrix ensembles. Nonlinearity 13, 1965–1986 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Forrester, P.J., Krishnapur, M.: Derivation of an eigenvalue probability density function relating to the Poincaréé disk. J. Phys. A 42, 385204, 10 (2009)

    Article  MATH  Google Scholar 

  16. Guhr, T., Müller-Groeling, A., Weidenmüller, H.: Random-matrix theories in quantum physics: common concepts. Phys. Rep. 299, 189–425 (1998)

    Article  MathSciNet  Google Scholar 

  17. Halmos, P.R.: Measure Theory. D. Van Nostrand Company Inc, New York, N. Y. (1950)

    Book  MATH  Google Scholar 

  18. Hua, L.K.: Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains. Translated from the Russian by Leo Ebner and Adam Korányi American Mathematical Society, Providence, R.I. (1963)

  19. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  20. Hedenmalm, H., Korenblum, B., Zhu, K.: Theory of Bergman Spaces, vol. 199. Springer-Verlag, New York (2000)

    MATH  Google Scholar 

  21. Hedenmalm, H., Wennman, A.: Planar orthogonal polynomials and boundary universality in the random normal matrix model. Acta Math. 227, 309–406 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv. 3, 206–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, 51. American Mathematical Society, Providence, RI (2009)

  24. Krishnapur, M.: Zeros of random analytic functions. In: Thesis (Ph.D.)-University of California, Berkeley. (2006)

  25. Krishnapur, M.: From random matrices to random analytic functions. Ann. Probab. 37, 314–346 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kondratiev, Y.G., Kuna, T.: Harmonic analysis on configuration space. I. General theory. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5, 201–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lenard, A.: Correlation functions and the uniqueness of the state in classical statistical mechanics. Commun. Math. Phys. 30, 35–44 (1973)

    Article  MathSciNet  Google Scholar 

  28. Macchi, O.: The coincidence approach to stochastic point processes. Adv. Appl. Probab. 7, 83–122 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mehta, M.L.: Random Matrices, vol. 142, 3rd edn. Elsevier/Academic Press, Amsterdam (2004)

    MATH  Google Scholar 

  30. Neretin, Y.A.: Hua-type integrals over unitary groups and over projective limits of unitary groups. Duke Math. J. 114, 239–266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nagao, T., Wadati, M.: Correlation functions of random matrix ensembles related to classical orthogonal polynomials. J. Phys. Soc. Japan 60, 3298–3322 (1991)

    Article  MathSciNet  Google Scholar 

  32. Olshanski, G.: The problem of harmonic analysis on the infinite-dimensional unitary group. J. Funct. Anal. 205, 464–524 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Osada, H., Shirai, T.: Absolute continuity and singularity of Palm measures of the Ginibre point process. Probab. Theory Relat. Fields 165, 725–770 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pereira, T.: Lectures on Random Matrices. https://www.ma.imperial.ac.uk/~tpereir1/LecNotes_RMT.pdf, preprint

  35. Pickrell, D.: Measures on infinite-dimensional Grassmann manifolds. J. Funct. Anal. 70, 323–356 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pickrell, D.: Mackey analysis of infinite classical motion groups. Pac. J. Math. 150, 139–166 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  37. Paulsen, V.I., Raghupathi, M.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces, vol. 152. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  38. Peres, Y., Virág, B.: Zeros of the iid Gaussian power series: a conformally invariant determinantal process. Acta Math. 194, 1–35 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55, 923–975 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  40. Shirai, T., Takahashi, Y.: Fermion process and Fredholm determinant. In: Proceedings of the Second ISAAC Congress, Vol. 1 (Fukuoka, 1999), 15-23. Int. Soc. Anal. Appl. Comput., 7, Kluwer Acad. Publ., Dordrecht (2000)

  41. Zhu, K.: Operator Theory in Function Spaces, vol. 138, 2nd edn. American Mathematical Society, Providence, RI (2007)

    Book  MATH  Google Scholar 

  42. Życzkowski, K., Sommers, H.-J.: Truncations of random unitary matrices. J. Phys. A 33, 2045–2057 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

Communicated by Michael Hartz.

In Memory of Professor Jörg Eschmeier.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Y.Qiu is supported by grants NSFC Y7116335K1, NSFC 11801547 and NSFC 11688101. K. Wang is supported by grants NSFC (12231005, 12026250, 11722102) and the Shanghai Technology Innovation Project (21JC1400800).

This article is part of the topical collection “Multivariable Operator Theory. The Jörg Eschmeier Memorial” edited by Raul Curto, Michael Hartz, Mihai Putinar and Ernst Albrecht.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Qiu, Y. & Wang, K. Truncations of Random Unitary Matrices Drawn from Hua-Pickrell Distribution. Complex Anal. Oper. Theory 17, 6 (2023). https://doi.org/10.1007/s11785-022-01306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-022-01306-8

Keywords

Mathematics Subject Classification

Navigation