Skip to main content
Log in

Nano-silicon mediated alleviation of Cd toxicity by cell wall adsorption and antioxidant defense system in rice seedlings

  • Research Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Purpose

Heavy metal, particularly cadmium (Cd) is toxic to rice growth. Studies showed that nano-silicon particles (SiNPs) can alleviate Cd toxicity. However, underlying mechanisms especially cell wall adsorption and different forms of pectin are rarely investigated.

Methods

In this experiment, the impacts of foliar application of SiNPs (2.5 mM) were investigated to alleviate Cd stress (50 μM) in rice and to study the role of SiNPs in reducing Cd-induced inhibition of plant growth, antioxidant defense systems, Cd translocation, and cell wall adsorption.

Results

The results exhibited that Cd toxicity inhibited rice growth and biomass accumulation, meanwhile leaves had high concentrations of Cd. However, foliar application of SiNPs improved root and shoot growth. Moreover, Cd concentration was reduced in the leaves of rice seedlings. The results of Fourier Infrared Spectroscopy (FTIR) showed that SiNPs enhanced peak values of polysaccharides. In addition, X-ray photoelectron spectroscopy (XPS) showed high Cd contents in the roots of rice seedlings. Cell wall showed high concentrations of Cd, moreover, enhancement of antioxidant defense mechanism and the alleviation of oxidative stress symptoms in leaves by SiNPs may be directly related to the decrease of Cd concentration in leaves.

Conclusion

Altogether, our study results show that SiNPs can alleviate Cd toxicity in rice seedlings by reducing Cd uptake and enhancing cell wall Cd adsorption and antioxidant defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adamis PD, Gomes DS, Pinto MLC, Panek AD, Eleutherio EC (2004) The role of glutathione transferases in cadmium stress. Toxicol Lett 154:81–88

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Rizwan M, Hussain A, ur Rehman MZ, Ali B, Yousaf B, Wijaya L, Alyemeni MN, Ahmad P (2019) Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.). Plant Physiol Biochem 140:1–8

    Article  CAS  PubMed  Google Scholar 

  • Anthon GE, Barrett DM (2008) Combined enzymatic and colorimetric method for determining the uronic acid and methylester content of pectin: application to tomato products. Food Chem 110(1):239e247

    Article  Google Scholar 

  • Bao Q, Bao W, Li Y, Zhang S, Lian F, Huang Y (2021) Silicon combined with foliar melatonin for reducing the absorption and translocation of Cd and As by Oryza sativa L. in two contaminated soils. J Environ Manage 287:112343

  • Bhat JA, Shivaraj SM, Singh P, Navadagi DB, Tripathi DK, Dash PK, Solanke AU, Sonah H, Deshmukh R (2019) Role of silicon in mitigation of heavy metal stresses in crop plants. Plants 8(3):1–20

    Article  Google Scholar 

  • Cai Y, Zhang S, Cai K, Huang F, Pan B, Wang W (2020) Cd accumulation, biomass and yield of rice are varied with silicon application at different growth phases under high concentration cadmium-contaminated soil. Chemosphere 242:125128

    Article  CAS  PubMed  Google Scholar 

  • Chen DM, Chen DQ, Xue RR, Long J, Lin XH, Lin YH, Jia L, Zeng RS, Song YY (2019) Effects of boron, silicon and their interactions on cadmium accumulation and toxicity in rice plants. J Hazard Mater 367:447–455

    Article  CAS  PubMed  Google Scholar 

  • Cui J, Liu T, Li F, Yi J, Liu C, Yu H (2017) Silica nanoparticles alleviate cadmium toxicity in rice cells: mechanisms and size effects. Environ Pollut 228:363–369

    Article  CAS  PubMed  Google Scholar 

  • Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100(7):1383–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Saadony MT, Desoky ESM, Saad AM, Eid RS, Selem E, Elrys AS (2021) Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil. J Environ Sci 106:1–14

    Article  CAS  Google Scholar 

  • Fatemi H, Pour BE, Rizwan M (2021) Foliar application of silicon nanoparticles affected the growth, vitamin C, flavonoid, and antioxidant enzyme activities of coriander (Coriandrum sativum L.) plants grown in lead (Pb)-spiked soil. Environ Sci Pollut Res 28(2):1417–1425

    Article  CAS  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unraveling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gao M, Xu Y, Chang X, Dong Y, Song Z (2020) Effects of foliar application of graphene oxide on cadmium uptake by lettuce. J Hazard Mater 398:122859

    Article  CAS  PubMed  Google Scholar 

  • Gaur S, Kumar J, Kumar D, Chauhan DK, Srivastava PK (2020) Fascinating impact of silicon and silicon transporters in plants: a review. Ecotoxicol Environ Saf 202:110885

    Article  CAS  PubMed  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  PubMed  Google Scholar 

  • Greger M, Kabir AH, Landberg T, Maity PJ, Lindberg S (2016) Silicate reduces cadmium uptake into cells of wheat. Environ Pollut 211:90–97

    Article  CAS  PubMed  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast I. kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Brown PH (1994) Localization of boron in cell walls of squash and tobacco and its association with pectin (evidence for a structural role of boron in the cell wall). Plant Physiol 105(2):681–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Li M, Rizwan M, Dai Z, Tu S (2020) Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. J Hazard Mater 401:123393

    Article  PubMed  Google Scholar 

  • Hussain A, Rizwan M, Ali Q, Ali S (2019) Seed priming with silicon nanoparticles improved the biomass and yield while reduced the oxidative stress and cadmium concentration in wheat grains. Environ Sci Pollut Res 26(8):7579–7588

    Article  CAS  Google Scholar 

  • Kamran M, Danish M, Saleem MH, Malik Z, Parveen A, Abbasi GH, Jamil M, Ali S, Afzal S, Riaz M (2021) Application of abscisic acid and 6-benzylaminopurine modulated morpho-physiological and antioxidative defense responses of tomato (Solanum lycopersicum L.) by minimizing cobalt uptake. Chemosphere 263:128169

    Article  CAS  PubMed  Google Scholar 

  • Li T, Tao Q, Shohag MJI, Yang X, Sparks DL, Liang Y (2015) Root cell wall polysaccharides are involved in cadmium hyperaccumulation in Sedum alfredii. Plant Soil 389(1):387–399

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Loix C, Huybrechts M, Vangronsveld J, Gielen M, Keunen E, Cuypers A (2017) Reciprocal interactions between cadmium-induced cell wall responses and oxidative stress in plants. Front Plant Sci 8:1867

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J-F, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Goto S, Tamai K, Ichii M (2001) Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiol 127:1773–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Cai H, He C, Zhang W, Wang L (2015) A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol 206(3):1063–1074

    Article  CAS  PubMed  Google Scholar 

  • Ma C, Ci K, Zhu J, Sun Z, Liu Z, Li X, Zhu Y, Tang C, Wang P, Liu Z (2021) Impacts of exogenous mineral silicon on cadmium migration and transformation in the soil-rice system and on soil health. Sci Total Environ 759:143501

    Article  CAS  PubMed  Google Scholar 

  • Namjoyan S, Sorooshzadeh A, Rajabi A, Aghaalikhani M (2020) Nano-silicon protects sugar beet plants against water deficit stress by improving the antioxidant systems and compatible solutes. Acta Physiol Plant 42(10):1–16

    Article  Google Scholar 

  • Rahman MF, Ghosal A, Alam MF, Kabir AH (2017) Remediation of cadmium toxicity in field peas (Pisum sativum L.) through exogenous silicon. Ecotoxicol Environ Saf 135:165–172

    Article  CAS  PubMed  Google Scholar 

  • Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M, Brestic M (2019) Application of silicon nanoparticles in agriculture. Biotech 9(3):90–98

    Google Scholar 

  • Redgwell RJ, Selvendran RR (1986) Structural features of cell-wall polysaccharides of onion Allium cepa. Carbohydr Res 157:183–199

    Article  CAS  Google Scholar 

  • Riaz M, Kamran M, Fang Y, Yang G, Rizwan M, Ali S, Zhou Y, Wang Q, Deng L, Wang Y (2021a) Boron supply alleviates cadmium toxicity in rice (Oryza sativa L.) by enhancing cadmium adsorption on cell wall and triggering antioxidant defense system in roots. Chemosphere 266:128938

    Article  CAS  PubMed  Google Scholar 

  • Riaz M, Kamran M, Rizwan M, Ali S, Parveen A, Malik Z, Wang X (2021b) Cadmium uptake and translocation: selenium and silicon roles in Cd detoxification for the production of low Cd crops: a critical review. Chemosphere 273:129690. https://doi.org/10.1016/j.chemosphere.2021.129690

  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23(18):17859–17879

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Ibrahim M, Tsang DC, Zia-ur-Rehman M, Zahir ZA, Rinklebe J, Tack FM, Ok YS (2017) A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182:90–105

    Article  CAS  PubMed  Google Scholar 

  • Rizwan M, Ali S, ur Rehman MZ, Rinklebe J, Tsang DC, Bashir A, Maqbool A, Tack F, Ok YS (2018) Cadmium phytoremediation potential of Brassica crop species: a review. Sci Total Environ 631:1175–1191

    Article  PubMed  Google Scholar 

  • Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A, Zia ur Rehman M, Abdul Waris A (2019) Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214:269–277. https://doi.org/10.1016/j.chemosphere.2018.09.120 

  • Rushil M, Vandana T, Gaurav R, Suhas S, Miroslav N, Tripathi DK, Sonah H, Deshmukh R (2020) Significance of silicon uptake, transport, and deposition in plants. J Exp Bot 71(21):6703–6718. https://doi.org/10.1093/jxb/eraa301

  • Shi G, Cai Q, Liu C, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 61(1):45–52

    Article  CAS  Google Scholar 

  • Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329

    Article  CAS  Google Scholar 

  • Tamai K, Ma JF (2003) Characterization of silicon uptake by rice roots. New Phytol 158(3):431–436

    Article  CAS  PubMed  Google Scholar 

  • Thind S, Hussain I, Ali S, Hussain S, Hussain HA (2020) Physiological and biochemical bases of foliar silicon-induced alleviation of cadmium toxicity in wheat. J Soil Sci Plant Nutr 20:2714–2730. https://doi.org/10.1007/s42729-020-00337-4

  • Vaculík M, Pavlovič A, Lux A (2015) Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath's cell chloroplasts ultrastructure in maize. Ecotoxicol Environ Saf 120:66–73

    Article  PubMed  Google Scholar 

  • Wang S, Wang F, Gao S, Wang X (2016) Heavy metal accumulation in different rice cultivars as influenced by foliar application of nano-silicon. Water Air Soil Pollut 227(7):1–13

    Article  Google Scholar 

  • Wang P, Yang B, Wan H, Fang X, Yang C (2018) The differences of cell wall in roots between two contrasting soybean cultivars exposed to cadmium at young seedlings. Environ Sci Pollut Res 25(29):29705–29714

    Article  CAS  Google Scholar 

  • Wang L, Li R, Yan X, Liang X, Sun Y, Xu Y (2020) Pivotal role for root cell wall polysaccharides in cultivar-dependent cadmium accumulation in Brassica chinensis L. Ecotoxicol Environ Saf 194:110369

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Song H, Guan C, Zhang Z (2020) Boron alleviates cadmium toxicity in Brassica napus by promoting the chelation of cadmium onto the root cell wall components. Sci Total Environ 728:138833

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Tian H, Li L, Guan C, Zhang Z (2021a) Higher Cd-accumulating oilseed rape has stronger Cd tolerance due to stronger Cd fixation in pectin and hemicellulose and higher Cd chelation. Environ Pollut 285:117218

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Tian H, Li L, Wang X (2021b) Polyaspartic acid alleviates cadmium toxicity in rapeseed leaves by affecting cadmium translocation and cell wall fixation of cadmium. Ecotoxicol Environ Saf 224:112685

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, An L, Lu H, Zhu C (2009) Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. Planta 230(4):755–765

    Article  CAS  PubMed  Google Scholar 

  • Xu SS, Zu Lin S, Lai ZX (2015a) Cadmium impairs iron homeostasis in Arabidopsis thaliana by increasing the polysaccharide contents and the iron-binding capacity of root cell walls. Plant Soil 392(1):71–85

    Article  CAS  Google Scholar 

  • Xu X, Yang J, Zhao X, Zhang X, Li R (2015b) Molecular binding mechanisms of manganese to the root cell wall of Phytolacca americana L. using multiple spectroscopic techniques. J Hazard Mater 296:185–191

    Article  CAS  PubMed  Google Scholar 

  • Yan G-C, Nikolic M, Ye M-J, Xiao Z-X, Liang Y-C (2018) Silicon acquisition and accumulation in plant and its significance for agriculture. J Integr Agric 17(10):2138–2150

    Article  CAS  Google Scholar 

  • Yan L, Riaz M, Liu J, Liu Y, Zeng Y, Jiang C (2021) Boron reduces aluminum deposition in alkali-soluble pectin and cytoplasm to release aluminum toxicity. J Hazard Mater 401:123388

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Lin R, Zhang W, Xu Y, Wei X, Zhuo C, Qin J, Li H (2019) Comparison of Cd subcellular distribution and Cd detoxification between low/high Cd-accumulative rice cultivars and sea rice. Ecotoxicol Environ Saf 185:109698

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Wang K, Huang H, Zhang X, Li T (2021) The regulatory role of root in cadmium accumulation in a high cadmium-accumulating rice line (Oryza sativa L.). Environ Sci Pollut Res 28(20):25432–25441

    Article  CAS  Google Scholar 

  • Zhao F-J, Wang P (2020) Arsenic and cadmium accumulation in rice and mitigation strategies. Plant Soil 446(1):1–21

    Article  CAS  Google Scholar 

  • Zhao H, Guan J, Liang Q et al (2021) Effects of cadmium stress on growth and physiological characteristics of sassafras seedlings. Sci Rep 11:9913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C, Chen J, Wang T, Chen H, Li R, Ma W, Wei H (2017) Effect of flooding on cadmium content in different cell wall components of the root and stem of Salix variegata Franch. Journal of Agro-Environment Science 36(12):2421–2428

    Google Scholar 

  • Zhu XF, Wang ZW, Dong F, Lei GJ, Shi YZ, Li GX, Zheng SJ (2013) Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. J Hazard Mater 263:398–403

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is financially supported by the Key-Area Research and Development Program of Guangdong Province (2018B020205003).

Author information

Authors and Affiliations

Authors

Contributions

M.R and X.W designed and supervised this study; M.R conducted the experiments, performed data interpretation, and drafted the manuscript; M.K, and S.F helped to revise the manuscript grammatically. M.R and X.W critically reviewed and revised the final manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiurong Wang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Responsible Editor: Martin J. Hodson.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, M., Kamran, M., Fahad, S. et al. Nano-silicon mediated alleviation of Cd toxicity by cell wall adsorption and antioxidant defense system in rice seedlings. Plant Soil 486, 103–117 (2023). https://doi.org/10.1007/s11104-022-05588-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-022-05588-x

Keywords

Navigation