Skip to main content
Log in

Trithorax-group protein ATX5 mediates the glucose response via impacting the HY1-ABI4 signaling module

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

Trithorax-group Protein ARABIDOPSIS TRITHORAX5 modulates the glucose response.

Abstract

Glucose is an evolutionarily conserved modulator from unicellular microorganisms to multicellular animals and plants. Extensive studies have shown that the Trithorax-group proteins (TrxGs) play essential roles in different biological processes by affecting histone modifications and chromatin structures. However, whether TrxGs function in the glucose response and how they achieve the control of target genes in response to glucose signaling in plants remain unknown. Here, we show that the Trithorax-group Protein ARABIDOPSIS TRITHORAX5 (ATX5) affects the glucose response and signaling. atx5 loss-of-function mutants display glucose-oversensitive phenotypes compared to the wild-type (WT). Genome-wide RNA-sequencing analyses have revealed that ATX5 impacts the expression of a subset of glucose signaling responsive genes. Intriguingly, we have established that ATX5 directly controls the expression of HY1 by trimethylating H3 lysine 4 of the Arabidopsis Heme Oxygenase1 (HY1) locus. Glucose signaling causes the suppression of ATX5 activity and subsequently reduces the H3K4me3 levels at the HY1 locus, thereby leading to the increased expression of ABSCISIC ACID-INSENSITIVE4 (ABI4). This result suggests that an important ATX5-HY1-ABI4 regulatory module governs the glucose response. This idea is further supported by genetic evidence showing that an atx5 hy1-100 abi4 triple mutant showed a similar glucose-insensitive phenotype as compared to that of the abi4 single mutant. Our findings show that a novel ATX5-HY1-ABI4 module controls the glucose response in Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez-Venegas R, Avramova Z (2002) SET-domain proteins of the Su (var) 3–9, E (z) and trithorax families. Gene 285:25–37

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Venegas R, Pien S, Sadder M, Witmer X, Grossniklaus U, Avramova Z (2003) ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol 13:627–637

    Article  CAS  PubMed  Google Scholar 

  • Arenas-Huertero F, Arroyo A, Zhou L, Sheen J, Leon P (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev 14:2085–2096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baumbusch LO et al (2001) The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Res 29:4319–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bossi F, Cordoba E, Dupré P, Mendoza MS, Román CS, León P (2009) The Arabidopsis ABA-INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2. 2 genes during sugar signaling. Plant J 59:359–374

    Article  CAS  PubMed  Google Scholar 

  • Cao Z et al (2011) BnHO1, a haem oxygenase-1 gene from Brassica napus, is required for salinity and osmotic stress-induced lateral root formation. J Exp Bot 62:4675–4689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XY et al (2009) Endogenous hydrogen peroxide plays a positive role in the upregulation of heme oxygenase and acclimation to oxidative stress in wheat seedling leaves. J Integr Plant Biol 51:951–960

    Article  CAS  PubMed  Google Scholar 

  • Chen Y-H, Chao Y-Y, Hsu YY, Hong C-Y, Kao CH (2012) Heme oxygenase is involved in nitric oxide-and auxin-induced lateral root formation in rice. Plant Cell Rep 31:1085–1091

    Article  CAS  PubMed  Google Scholar 

  • Cho Y-H, Yoo S-D, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    Article  CAS  PubMed  Google Scholar 

  • Cho Y-H, Yoo S-D, Sheen J (2007) Glucose signaling through nuclear hexokinase1 complex in Arabidopsis. Plant Signal Behav 2:123–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho J-I et al (2009) Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol 149:745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho Y-H, Sheen J, Yoo S-D (2010) Low glucose uncouples hexokinase1-dependent sugar signaling from stress and defense hormone abscisic acid and C2H4 responses in Arabidopsis. Plant Physiol 152:1180–1182

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cui W, Fu G, Wu H, Shen W (2011) Cadmium-induced heme oxygenase-1 gene expression is associated with the depletion of glutathione in the roots of Medicago sativa. Biometals 24:93–103

    Article  CAS  PubMed  Google Scholar 

  • Cui W, Li L, Gao Z, Wu H, Xie Y, Shen W (2012) Haem oxygenase-1 is involved in salicylic acid-induced alleviation of oxidative stress due to cadmium stress in Medicago sativa. J Exp Bot 63:5521–5534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis SJ, Kurepa J, Vierstra RD (1999) The Arabidopsis thaliana HY1 locus, required for phytochrome-chromophore biosynthesis, encodes a protein related to heme oxygenases. Proc Natl Acad Sci 96:6541–6546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Einhauer A, Jungbauer A (2001) The FLAG™ peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49:455–465

    Article  CAS  PubMed  Google Scholar 

  • Emborg TJ, Walker JM, Noh B, Vierstra RD (2006) Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis. Plant Physiol 140:856–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkelstein RR, Gibson SI (2002) ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr Opin Plant Biol 5:26–32

    Article  CAS  PubMed  Google Scholar 

  • Fu G, Zhang L, Cui W, Wang Y, Shen W, Ren Y, Zheng T (2011) Induction of heme oxygenase-1 with β-CD-hemin complex mitigates cadmium-induced oxidative damage in the roots of Medicago sativa. Plant Soil 345:271–285

    Article  CAS  Google Scholar 

  • Fu X et al (2014) Overcoming endocrine resistance due to reduced PTEN levels in estrogen receptor-positive breast cancer by co-targeting mammalian target of rapamycin, protein kinase B, or mitogen-activated protein kinase kinase. Breast Cancer Res 16:430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gisk B, Yasui Y, Kohchi T, Frankenberg-Dinkel N (2010) Characterization of the haem oxygenase protein family in Arabidopsis thaliana reveals a diversity of functions. Biochem J 425:425–434

    Article  CAS  PubMed  Google Scholar 

  • Granot D, Kelly G, Stein O, David-Schwartz R (2013) Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. J Exp Bot 65:809–819

    Article  CAS  PubMed  Google Scholar 

  • Guo K, Xia K, Yang Z-M (2008) Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide. J Exp Bot 59:3443–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han Y et al (2008) Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa. New Phytol 177:155–166

    CAS  PubMed  Google Scholar 

  • Han B et al (2012) ZmHO-1, a maize haem oxygenase-1 gene, plays a role in determining lateral root development. Plant Sci 184:63–74

    Article  CAS  PubMed  Google Scholar 

  • Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu YY, Chao Y-Y, Kao CH (2013) Methyl jasmonate-induced lateral root formation in rice: the role of heme oxygenase and calcium. J Plant Physiol 170:63–69

    Article  CAS  PubMed  Google Scholar 

  • Jang JC, Sheen J (1997) Sugar sensing in higher plants. Trends Plant Sci 2:208–214

    Article  Google Scholar 

  • Jang J-C, León P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin Q, Zhu K, Cui W, Xie Y, Han B, Shen W (2013) Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ 36:956–969

    Article  CAS  PubMed  Google Scholar 

  • Karve R, Lauria M, Virnig A, Xia X, Rauh BL, d Moore B (2010) Evolutionary lineages and functional diversification of plant hexokinases. Mol Plant 3:334–346

    Article  CAS  PubMed  Google Scholar 

  • Karve A, Xia X, d Moore B (2012) Arabidopsis hexokinase-like1 and hexokinase1 form a critical node in mediating plant glucose and ethylene responses. Plant Physiol 158:1965–1975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerchev PI et al (2011) The transcription factor ABI4 is required for the ascorbic acid–dependent regulation of growth and regulation of jasmonate-dependent defense signaling pathways in Arabidopsis. Plant Cell 23:3319–3334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YM et al (2013) A dual role of tobacco hexokinase 1 in primary metabolism and sugar sensing. Plant Cell Environ 36:1311–1327

    Article  CAS  PubMed  Google Scholar 

  • Kingston RE, Tamkun JW (2014) Transcriptional regulation by trithorax-group proteins. Cold Spring Harb Perspect Biol 6:a019349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laby RJ, Kincaid MS, Kim D, Gibson SI (2000) The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response. Plant J 23:587–596

    Article  CAS  PubMed  Google Scholar 

  • León P, Sheen J (2003) Sugar and hormone connections. Trends Plant Sci 8:110–116

    Article  CAS  PubMed  Google Scholar 

  • Li L, Sheen J (2016) Dynamic and diverse sugar signaling. Curr Opin Plant Biol 33:116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y-T, Li M-Y, Cui W-T, Lu W, Shen W-B (2012) Haem oxygenase-1 is involved in hydrogen sulfide-induced cucumber adventitious root formation. J Plant Growth Regul 31:519–528

    Article  CAS  Google Scholar 

  • Liu Y et al (2018) Trithorax-group proteins ARABIDOPSIS TRITHORAX4 (ATX4) and ATX5 function in abscisic acid and dehydration stress responses. New Phytol 217:1582–1597

    Article  CAS  PubMed  Google Scholar 

  • Martin T, Oswald O, Graham IA (2002) Arabidopsis seedling growth, storage lipid mobilization, and photosynthetic gene expression are regulated by carbon: nitrogen availability. Plant Physiol 128:472–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirshamsi Kakhki A, Shahriari Ahmadi F, Bahrami AR, Gray J (2009) Expression of EIN2 gene in petunia flowers is down-regulated during glucose treatment. Hortic Environ Biotechnol 50:247–252

    Google Scholar 

  • Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J (2001) Arabidopsis genomes uncoupled 5 (GUN5) mutant reveals the involvement of Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl Acad Sci 98:2053–2058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore B et al (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light and hormonal signaling. Science 300:332–336

    Article  CAS  PubMed  Google Scholar 

  • Muramoto T, Kohchi T, Yokota A, Hwang I, Goodman HM (1999) The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase. Plant Cell 11:335–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson A, Olsson T, Ulfstedt M, Thelander M, Ronne H (2011) Two novel types of hexokinases in the moss Physcomitrella patens. BMC Plant Biol 11:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:S185–S205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saleh A et al (2008) The highly similar Arabidopsis homologs of trithorax ATX1 and ATX2 encode proteins with divergent biochemical functions. Plant Cell 20:568–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheen J (2014) Master regulators in plant glucose signaling networks. J Plant Biol 57:67–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhawat G, Verma K (2010) Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence. J Exp Bot 61:2255–2270

    Article  CAS  PubMed  Google Scholar 

  • Shen Y-C, Liaw C-C, Ho J-R, Khalil AT, Kuo Y-H (2006) Isolation of aureol from Smenospongia sp. and cytotoxic activity of some aureol derivatives. Nat Prod Res 20:578–585

    Article  CAS  PubMed  Google Scholar 

  • Smeekens S, Ma J, Hanson J, Rolland F (2010) Sugar signals and molecular networks controlling plant growth. Current opinion in plant biology 13:273–278

    Article  CAS  Google Scholar 

  • Teng S, Rognoni S, Bentsink L, Smeekens S (2008) The Arabidopsis GSQ5/DOG1 Cvi allele is induced by the ABA-mediated sugar signalling pathway, and enhances sugar sensitivity by stimulating ABI4 expression. Plant J 55:372–381

    Article  CAS  PubMed  Google Scholar 

  • Tomiyama M et al (2014) Mg-chelatase I subunit 1 and Mg-protoporphyrin IX methyltransferase affect the stomatal aperture in Arabidopsis thaliana. J Plant Res 127:553–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urano D, Jones JC, Wang H, Matthews M, Bradford W, Bennetzen JL, Jones AM (2012) G protein activation without a GEF in the plant kingdom. PLoS Genet 8:e1002756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veerappan CS, Avramova Z, Moriyama EN (2008) Evolution of SET-domain protein families in the unicellular and multicellular Ascomycota fungi. BMC Evol Biol 8:190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wind JJ, Peviani A, Snel B, Hanson J, Smeekens SC (2013) ABI4: versatile activator and repressor. Trends Plant Sci 18:125–132

    Article  CAS  PubMed  Google Scholar 

  • Xie YJ et al (2011) Evidence of Arabidopsis salt acclimation induced by up-regulation of HY1 and the regulatory role of RbohD-derived reactive oxygen species synthesis. Plant J 66:280–292

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Xu D, Cui W, Shen W (2012) Mutation of Arabidopsis HY1 causes UV-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. J Exp Bot 63:3869–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Mao Y, Duan X, Zhou H, Lai D, Zhang Y, Shen W-B (2016) Arabidopsis HY1-modulated stomatal movement: an integrative hub for its functionally associated with ABI4 in the dehydration-induced ABA responsiveness Plant Physiol 170:1699–1713

    CAS  PubMed  Google Scholar 

  • Xiong Y, McCormack M, Li L, Hall Q, Xiang C, Sheen J (2013) Glucose–TOR signalling reprograms the transcriptome and activates meristems. Nature 496:181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S et al (2012) RNAi knockdown of rice SE5 gene is sensitive to the herbicide methyl viologen by the down-regulation of antioxidant defense. Plant Mol Biol 80:219–235

    Article  CAS  PubMed  Google Scholar 

  • Xuan W et al (2008) The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process. Plant Physiol 148:881–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xuan W et al (2012) Nitric oxide is involved in hemin-induced cucumber adventitious rooting process. J Plant Physiol 169:1032–1039

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Yoo S-D, Sheen J (2003) Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425:521

    Article  CAS  PubMed  Google Scholar 

  • Yannarelli GG, Noriega GO, Batlle A, Tomaro ML (2006) Heme oxygenase up-regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species. Planta 224:1154–1162

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Jang J-c, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant. Proc Natl Acad Sci 95:10294–10299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31601311 and 31771352), the National Key Research and Development Program of China (2016YFD0102003), the Natural Science Foundation of Jilin Province of China (20180101233JC) and the Fundamental Research Funds for the Central Universities (#2412018BJ002) to Z.-Y.X. We thank Dr. Wenbiao Shen (College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing 20095, China) for generously providing the hy1-100, abi4 and hy1-100 abi4 double mutants. We appreciate Dr. Lei Li and Dr. Lin Shi (Department of Genetics, Harvard Medical School and Department of Molecular Biology; Center for Computational and Integrative Biology, Massachusetts General Hospital, MA 02114, USA) for suggestions about the project.

Author information

Authors and Affiliations

Authors

Contributions

Z-YX and BL devised the project. Z-YX and BL supervised the project. YL performed the most of physiological analyses in response to glucose. JW performed RNA-sequencing experiment and analyzed data. HY performed the ChIP-qPCR analysis. AZ, SH, T-JW, performed biochemical analyses. QM, NN, YW, PG and RA took part in performing molecular cloning and some physiological analyses. Z-YX, and BL wrote the manuscript. All authors reviewed, revised, and approved the manuscript.

Corresponding authors

Correspondence to Bao Liu or Zheng-Yi Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Accession number

Data generated in this study are deposited in the National Center for Biotechnology Information Sequence Read Archive (Accession No. SUB3959287).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2959 KB)

Supplementary material 2 (XLSX 1721 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, J., Yin, H. et al. Trithorax-group protein ATX5 mediates the glucose response via impacting the HY1-ABI4 signaling module. Plant Mol Biol 98, 495–506 (2018). https://doi.org/10.1007/s11103-018-0791-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-018-0791-0

Keywords

Navigation