Skip to main content
Log in

Conserved and plant-specific histone acetyltransferase complexes cooperate to regulate gene transcription and plant development

  • Article
  • Published:

From Nature Plants

View current issue Submit your manuscript

Abstract

Although a conserved SAGA complex containing the histone acetyltransferase GCN5 is known to mediate histone acetylation and transcriptional activation in eukaryotes, how to maintain different levels of histone acetylation and transcription at the whole-genome level remains to be determined. Here we identify and characterize a plant-specific GCN5-containing complex, which we term PAGA, in Arabidopsis thaliana and Oryza sativa. In Arabidopsis, the PAGA complex consists of two conserved subunits (GCN5 and ADA2A) and four plant-specific subunits (SPC, ING1, SDRL and EAF6). We find that PAGA and SAGA can independently mediate moderate and high levels of histone acetylation, respectively, thereby promoting transcriptional activation. Moreover, PAGA and SAGA can also repress gene transcription via the antagonistic effect between PAGA and SAGA. Unlike SAGA, which regulates multiple biological processes, PAGA is specifically involved in plant height and branch growth by regulating the transcription of hormone biosynthesis and response related genes. These results reveal how PAGA and SAGA cooperate to regulate histone acetylation, transcription and development. Given that the PAGA mutants show semi-dwarf and increased branching phenotypes without reduction in seed yield, the PAGA mutations could potentially be used for crop improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Identification and characterization of a plant-specific GCN5-containing complex, PAGA.
Fig. 2: SPC increases the binding of ING1 to methylated H3K4 peptides in vitro.
Fig. 3: ADA2A and SPC increase the histone acetylation activity of GCN5.
Fig. 4: PAGA- and SAGA-dependent regulation of gene expression as determined by RNA-seq.
Fig. 5: Identification of SAGA- and PAGA-bound genes and determination of the effect of SAGA and PAGA mutations on H3K9Ac and transcription at their bound genes.
Fig. 6: PAGA regulates plant height and branch number in Arabidopsis.
Fig. 7: PAGA and SAGA antagonistically regulate gene transcription and plant development.
Fig. 8: Model of how SAGA and PAGA regulate gene transcription and plant development.

Similar content being viewed by others

Data availability

A reporting summary for this paper is available as a Supplementary Information file. Raw RNA-seq and ChIP-seq data have been deposited in the Gene Expression Omnibus (GEO) database with the accession code GSE199761. The Arabidopsis and rice sequence data used in this study are from TAIR 10 and the CHINA RICE DATA CENTER, respectively. The accession numbers of genes reported in this study are as follows: GCN5 (AT3G54610), ADA2B (AT4G16420), ADA2A (AT3G07740), SPC (AT1G77800), ING1 (AT3G24010), SDRL (AT1G10310), EAF6 (AT4G14385), SGF29A (AT3G27460), SGF29B (AT5G40550), TAF5 (AT5G25150), TAF6 (AT1G04950), TAF6B (AT1G54360), TAF9 (AT1G54140), TAF10 (AT4G31720), TAF12 (AT3G10070), TAF12B (AT1G17440), SPT20 (AT1G72390), ADA1A (AT2G14850), ADA1B (AT4G33890), ADA1C (AT5G67410), ADA1D (AT4G31440), ADA1E (AT2G24530), TRA1A (AT2G17930), TRA1B (AT4G36080), SF3B3 (AT3G55200, AT3G55220), SF3B5A (AT3G23325), SF3B5B (AT4G14342), SCS1 (AT5G22450), SCS2A (AT2G19390), SCS2B (AT4G29790), TAFL (AT5G65540), HAM1 (AT5G64610), HAM2 (AT5G09740), EPL1A (AT1G16690), EPL1B (AT1G79020), EAF1A (AT3G24880), EAF1B (AT3G24870), ING2 (AT1G54390), SWC4 (AT2G47210), ARP4 (AT1G18450), EAF7 (AT1G26470), GAS41 (AT5G45600), MRG1 (AT4G37280), GA2OX2 (AT1G30040), GA2OX6 (AT1G02400), TCP15 (AT1G69690), IAA19 (AT3G15540), RAV2 (AT1G68840), MYB70 (AT2G23290), OsGCN5 (Os10g0415900), OsADA2 (Os03g0750800), OsSPCA (Os06g0209300), OsING1 (Os03g0143600), OsEAF6B (Os12g0298600), OsSDRL (Os02g0557700), OsTAF5A (Os06g0649500), OsTAF5B (Os07g0205200), OsTAF6 (Os01g0510800), OsTAF9A (Os03g0408500), OsTAF10 (Os09g0431500), OsTAF12B (Os01g0846900), OsSPT20 (Os10g0391100), OsADA1A (Os12g0580500), OsADA1B (Os03g0762700), OsSF3B3A (Os02g0137400), OsSF3B5A (Os08g0444100), OsSCS1A (Os01g0967100), OsSCS2 (Os05g0350700) and OsTAFL (Os03g0802300). Source data are provided with this paper.

References

  1. Kouzarides, T. Chromatin modifications and their function. Cell 128, 693–705 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Bannister, A. J. & Kouzarides, T. Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Karlic, R., Chung, H. R., Lasserre, J., Vlahovicek, K. & Vingron, M. Histone modification levels are predictive for gene expression. Proc. Natl Acad. Sci. USA 107, 2926–2931 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clouaire, T. et al. Comprehensive mapping of histone modifications at DNA double-strand breaks deciphers repair pathway chromatin signatures. Mol. Cell 72, 250–262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kurdistani, S. K., Tavazoie, S. & Grunstein, M. Mapping global histone acetylation patterns to gene expression. Cell 117, 721–733 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Verdin, E. & Ott, M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, C. J. et al. Three functionally redundant plant-specific paralogs are core subunits of the SAGA histone acetyltransferase complex in Arabidopsis. Mol. Plant 14, 1071–1087 (2021).

    Article  PubMed  Google Scholar 

  8. Helmlinger, D. & Tora, L. Sharing the SAGA. Trends Biochem. Sci. 42, 850–861 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herbst, D. A. et al. Structure of the human SAGA coactivator complex. Nat. Struct. Mol. Biol. 28, 989–996 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grant, P. A. et al. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11, 1640–1650 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Spedale, G., Timmers, H. T. & Pijnappel, W. W. ATAC-king the complexity of SAGA during evolution. Genes Dev. 26, 527–541 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, K. K. et al. Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol. Syst. Biol. 7, 503–515 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wang, L. & Dent, S. Y. Functions of SAGA in development and disease. Epigenomics 6, 329–339 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Suganuma, T. et al. ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. Nat. Struct. Mol. Biol. 15, 364–372 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Stockinger, E. J., Mao, Y., Regier, M. K., Triezenberg, S. J. & Thomashow, M. F. Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res. 29, 1524–1533 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Earley, K. W., Shook, M. S., Brower-Toland, B., Hicks, L. & Pikaard, C. S. In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. Plant J. 52, 615–626 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Bhat, R. A. et al. Alteration of GCN5 levels in maize reveals dynamic responses to manipulating histone acetylation. Plant J. 33, 455–469 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, S. et al. Rice homeodomain protein WOX11 recruits a histone acetyltransferase complex to establish programs of cell proliferation of crown root meristem. Plant Cell 29, 1088–1104 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Benhamed, M., Bertrand, C., Servet, C. & Zhou, D. X. Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18, 2893–2903 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen, C. et al. Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis. Nat. Plants 3, 814–824 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Kim, S. et al. GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5’ and 3’ ends of its target genes. Nucleic Acids Res. 48, 5953–5966 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Servet, C., Conde e Silva, N. & Zhou, D. X. Histone acetyltransferase AtGCN5/HAG1 is a versatile regulator of developmental and inducible gene expression in Arabidopsis. Mol. Plant 3, 670–677 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Vlachonasios, K. E., Thomashow, M. F. & Triezenberg, S. J. Disruption mutations of ADA2b and GCN5 transcriptional adaptor genes dramatically affect Arabidopsis growth, development, and gene expression. Plant Cell 15, 626–638 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kornet, N. & Scheres, B. Members of the GCN5 histone acetyltransferase complex regulate PLETHORA-mediated root stem cell niche maintenance and transit amplifying cell proliferation in Arabidopsis. Plant Cell 21, 1070–1079 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Poulios, S. & Vlachonasios, K. E. Synergistic action of GCN5 and CLAVATA1 in the regulation of gynoecium development in Arabidopsis thaliana. New Phytol. 220, 593–608 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Kim, J. Y., Oh, J. E., Noh, Y. S. & Noh, B. Epigenetic control of juvenile-to-adult phase transition by the Arabidopsis SAGA-like complex. Plant J. 83, 537–545 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Hark, A. T. et al. Two Arabidopsis orthologs of the transcriptional coactivator ADA2 have distinct biological functions. Biochim. Biophys. Acta 1789, 117–124 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Tan, L. M. et al. The PEAT protein complexes are required for histone deacetylation and heterochromatin silencing. EMBO J. 37, e98770 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhou, J. X. et al. The Arabidopsis NuA4 histone acetyltransferase complex is required for chlorophyll biosynthesis and photosynthesis. J. Integr. Plant Biol. 64, 901–914 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Zhao, S., Zhang, B., Yang, M., Zhu, J. & Li, H. Systematic profiling of histone readers in Arabidopsis thaliana. Cell Rep. 22, 1090–1102 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, W. Y., Lee, D., Chung, W. I. & Kwon, C. S. Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. Plant J. 58, 511–524 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Ruiz-Garcia, A. B., Sendra, R., Pamblanco, M. & Tordera, V. Gcn5p is involved in the acetylation of histone H3 in nucleosomes. FEBS Lett. 403, 186–190 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Hassan, A. H. et al. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 111, 369–379 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Bian, C. et al. Sgf29 binds histone H3K4me2/3 and is required for SAGA complex recruitment and histone H3 acetylation. EMBO J. 30, 2829–2842 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hedden, P. The genes of the Green Revolution. Trends Genet. 19, 5–9 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, B., Smith, S. M. & Li, J. Genetic regulation of shoot architecture. Annu. Rev. Plant Biol. 69, 437–468 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, Y. & Li, J. Molecular basis of plant architecture. Annu. Rev. Plant Biol. 59, 253–279 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Rieu, I. et al. Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20, 2420–2436 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, H., Caruso, L. V., Downie, A. B. & Perry, S. E. The embryo MADS domain protein AGAMOUS-Like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism. Plant Cell 16, 1206–1219 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Davière, J. M. et al. Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Curr. Biol. 24, 1923–1928 (2014).

    Article  PubMed  Google Scholar 

  41. Marzi, D. et al. Light controls stamen elongation via cryptochromes, phytochromes and COP1 through HY5 and HYH. Plant J. 103, 379–394 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Matías-Hernández, L. et al. TEMPRANILLO reveals the mesophyll as crucial for epidermal trichome formation. Plant Physiol. 170, 1624–1639 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wan, J. et al. MYB70 modulates seed germination and root system development in Arabidopsis. iScience 24, 103228 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, S. & Shogren-Knaak, M. A. The Gcn5 bromodomain of the SAGA complex facilitates cooperative and cross-tail acetylation of nucleosomes. J. Biol. Chem. 284, 9411–9417 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ringel, A. E., Cieniewicz, A. M., Taverna, S. D. & Wolberger, C. Nucleosome competition reveals processive acetylation by the SAGA HAT module. Proc. Natl Acad. Sci. USA 112, E5461–E5470 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vermeulen, M. et al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142, 967–980 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Guo, J. et al. The CBP/p300 histone acetyltransferases function as plant-specific MEDIATOR subunits in Arabidopsis. J. Integr. Plant Biol. 63, 755–771 (2020).

    Article  Google Scholar 

  48. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Zhao, Q. Q., Lin, R. N., Li, L., Chen, S. & He, X. J. A methylated-DNA-binding complex required for plant development mediates transcriptional activation of promoter methylated genes. J. Integr. Plant Biol. 61, 120–139 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zang, C. et al. A clustering approach for identification of enriched domains from histone modification ChIP-seq data. Bioinformatics 25, 1952–1958 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen, L. Q. et al. ATX3, ATX4, and ATX5 encode putative H3K4 methyltransferases and are critical for plant development. Plant Physiol. 174, 1795–1806 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32025003) to X.-J.H.

Author information

Authors and Affiliations

Authors

Contributions

C.-J.W., Z.-Z.L., X.X., L.W., L.L. and S.C. performed the experiments. D.-Y.Y., X.-W.C. and Y.-N.S. performed the bioinformatics analyses. C.-J.W. and X.-J.H. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Xin-Jian He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Plants thanks Keqiang Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 PAGA-dependent regulation of gene expression as determined by RNA-seq.

a, Scatter plots showing the correlation of gene expression changes between the spc mutant and the other PAGA mutants or the ada2b mutant. P values were generated by two-sided Pearson correlation test. b, Venn diagrams showing the overlap of down- and up-regulated DEGs (log2 FC > 1 or < −1, FDR < 0.05) in spc, spc ing1, and ada2a spc. P values were determined by the hypergeometric test (one-tailed). c, Heatmap showing the correlation of the effects of PAGA mutants on gene expression. Values indicate correlation coefficients.

Extended Data Fig. 2 Genome browser view of enriched signals of the ADA2B-, GCN5-, ADA2A-, and ING1-GFP proteins detected by ChIP-seq.

Screenshot showing some regions where both SAGA and PAGA are recruited and regions where only either SAGA or PAGA are recruited. Red boxes indicate SAGA- and PAGA-shared peaks. Pink boxes indicate SAGA-specific peaks. Green boxes indicate PAGA-specific peaks.

Extended Data Fig. 3 Identification of H3K9Ac and H3K14Ac level by ChIP-seq.

a, Genome browser view of H3K9Ac- and H3K14Ac-enriched peaks in WT detected by ChIP-seq. b, Percentage of genes with reduced (FC < 0.9, FDR < 0.01), increased (FC > 1.1, FDR < 0.01), and unchanged H3K14Ac levels in gcn5, ada2b, ada2a, and spc ing1 among the GCN5-, ADA2B-, ADA2A-, and ING1-bound genes, respectively. Values are the number of genes. c, Venn diagrams showing the overlap of ADA2B-, GCN5-, ADA2A-, and ING1-bound genes with reduced H3K14Ac level in ada2b, gcn5, ada2a, and spc ing1, respectively. d, Venn diagrams showing the overlap of H3K9Ac- and H3K14Ac-reduced target genes in ada2b, gcn5, ada2a, and spc ing1, respectively. e, Venn diagrams showing the overlap of H3K9Ac-reduced genes (FC < 0.9, FDR < 0.05) and expression-reduced genes (log2 FC < −1, FDR < 0.05) in gcn5, ada2b, ada2a, and spc ing1. P values were determined by the hypergeometric test (one-tailed).

Extended Data Fig. 4 H3K9Ac and H3K4me3 levels of SAGA- and PAGA-bound genes.

a, Boxplots showing the H3K9Ac and H3K4me3 levels of total SAGA- and PAGA-bound genes and bound genes with reduced or increased/unchanged H3K9Ac level in the corresponding SAGA and PAGA mutants. Random: 5000 random genes. Sample size of each boxplot: GCN5-bound a (n = 10081), b (n = 4717), and c (n = 5364); ADA2B-bound a (n = 6033), b (n = 3035), and c (n = 2998); ADA2A-bound a (n = 6940), b (n = 2234), and c (n = 4706); and ING1-bound a (n = 12989), b (n = 3095), c (n = 9894). In boxplots, centre lines and box edges are medians and the interquartile range (IQR), respectively. Whiskers extend within 1.5 times the IQR. P values determined by two-tailed Mann Whitney U test are indicated above boxes. b, H3K9Ac and H3K4me3 levels of SAGA- and PAGA-bound genes and of the bound genes with affected levels of H3K9Ac in the corresponding mutants. Total Arabidopsis genes were divided into deciles based on the H3K9Ac and H3K4me3 levels and sorted in ascending order. In each decile, the number of total ADA2B-, GCN5-, ADA2A-, and ING1-bound genes and of the bound genes with increased, reduced, and unchanged levels of H3K9Ac in the corresponding mutants are shown.

Extended Data Fig. 5 Morphological phenotypes of the SAGA and PAGA mutant plants.

a, Morphological phenotypes of the SAGA and PAGA mutant plants at different developmental stages. The top, middle, and bottom panels show 12-, 20-, and 31-day-old plants, respectively. b, The top panel shows images of trichomes on the adaxial side of the first leaf of WT, SAGA and PAGA mutant seedlings. Images are of 12-day-old seedlings grown on MS medium. The bottom panel shows morphological phenotypes of inflorescences in the SAGA and PAGA mutants. c, Left, shown are root length of 12-day-old seedlings (n = 20), numbers of the first rosette leaf with abaxial trichomes (n = 10), and numbers of rosette leaves from bolting plants (n = 24). ND indicates that ada2b mutant plants lacked trichomes on the abaxial side of rosette leaves. Right, shown are trichome numbers per leaf, leaf area, and trichome density on the adaxial side of the first leaf in the WT, SAGA and PAGA mutant seedlings (n = 10) (grown for 12 days on MS medium). Values are mean ± s.d. P values determined by two-tailed Student’s t-test are indicated above columns.

Extended Data Fig. 6 PAGA and SAGA antagonistically regulate plant development.

a, Morphological phenotypes of 30-day-old WT and T-DNA insertion mutant plants. b, Fresh weight of 30-day-old WT and T-DNA insertion mutant plants (n = 10). Values are mean ± s.d. P values determined by two-tailed Student’s t-test are indicated above columns.

Extended Data Fig. 7 Transcript levels of AT2G23290, AT2G17230, and AT1G70090 genes.

Transcript levels of indicated genes as determined RT-PCR. Values are means ± s.d. of three independent biological replicates. P values determined by two-tailed Student’s t-test are indicated above columns.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Tables 1 and 2.

Reporting Summary

Supplementary Data 1

Full list of co-purified proteins as determined by AP–MS using transgenic Arabidopsis plants in the WT and in the indicated mutant backgrounds.

Supplementary Data 2

Full list of co-purified proteins as determined by AP–MS using OsGCN5-GFP, OsADA2-GFP, OsSPCA-GFP and OsING1-GFP transgenic rice plants in the WT background.

Supplementary Data 3

Differentially expressed genes in the 12-day-old gcn5, ada2b, ada2a, spc, ing1, sdrl, eaf6, ada2a spc and spc ing1 mutants as determined by RNA-seq.

Supplementary Data 4

Peaks enriched by GCN5, ADA2B, ADA2A and ING1 as determined by ChIP-seq.

Supplementary Data 5

Peaks with reduced and increased H3K9Ac levels in the gcn5, ada2b, ada2a and spc ing1 mutants as determined by ChIP-seq.

Supplementary Data 6

Peaks with reduced and increased H3K14Ac levels in the gcn5, ada2b, ada2a and spc ing1 mutants as determined by ChIP-seq.

Supplementary Data 7

Differentially expressed genes in the 30-day-old gcn5, ada2b-c, ada2a, spc, ada2b-c ada2a and ada2b-c spc mutants as determined by RNA-seq.

Supplementary Data 8

List of primers used in this study.

Source data

Source Data Fig. 2

Unprocessed western blots.

Source Data Fig. 3

Unprocessed western blots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CJ., Yuan, DY., Liu, ZZ. et al. Conserved and plant-specific histone acetyltransferase complexes cooperate to regulate gene transcription and plant development. Nat. Plants 9, 442–459 (2023). https://doi.org/10.1038/s41477-023-01359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-023-01359-3

  • Springer Nature Limited

This article is cited by

Navigation