Skip to main content
Log in

Photosynthetic apparatus activity in relation to high and low contents of cell wall-bound phenolics in triticale under drought stress

  • Original papers
  • Published:
Photosynthetica

Abstract

Cell wall-bound phenolics (CWP) play an important role in the mechanisms of plant acclimation to soil drought. The study involved CWP analyses in 50 strains and 50 doubled haploid (DH) lines of winter triticale exposed to drought at their vegetative and generative stages. CWP in the plants experiencing drought at the generative stage positively correlated with their leaf water contents. The strains and DH lines characterized by high content of CWP showed higher leaf water content and higher activity of photosynthetic apparatus when exposed to drought at the generative stage compared to the strains and DH lines with the low CWP content. Furthermore, when drought subsided at the generative stage, the strains and DH lines richer in CWP demonstrated higher regeneration potential and their grain yield loss was smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABS/CSm :

light energy absorption

Chl:

chlorophyll

CWP:

cell wall-bound phenolics

CSm :

leaf cross-section

DH:

doubled haploid

DIo/CSm :

energy amount dissipated from PSII

ETo/CSm :

amount of energy used for the electron transport

Fv/Fm :

quantum yield of PSII

HCWP:

high content of cell wall-bound phenolics

LCWP:

low content of cell wall-bound phenolics

LDM :

leaf dry mass

LWC:

leaf water content

LFM :

leaf fresh mass

MCWP:

medium content of cell wall-bound phenolics

PI:

overall performance index of PSII photochemistry

\({Q_{{A^ - }}}\) :

plastochinone A

RC/CSm :

number of active reaction centers

SPh:

soluble phenolics

TRo/CSm :

amount of excitation energy trapped in PSII reaction centers

δRo :

efficiency with which an electron can move from the reduced intersystem electron acceptors to PSI end electron acceptors

φRo :

quantum yield of electron transport from \({Q_{{A^ - }}}\) to PSI end electron acceptors

Ψo :

leaf osmotic potential

ΨRo :

probability, at time 0, that a trapped exciton moves an electron into the electron transport chain beyond \({Q_{{A^ - }}}\)

References

  • Alexieva V., Sergiev I., Mapelli S., Karanov E.: The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. — Plant Cell Environ. 24: 1337–1344, 2001.

    Article  CAS  Google Scholar 

  • Ammar K., Mergoum M., Rajaram S.: The history and evolution of triticale.–In: Mergoum M., Gomez-Macpherson H. (ed.): Triticale Improvement and Production. Plant Production and Protection Paper 179. Pp. 9. FAO, Rome 2004.

    Google Scholar 

  • Ashraf M., Harris P.J.C.: Photosynthesis under stressful environments: An overview. — Photosynthetica 51: 163–190, 2013.

    Article  CAS  Google Scholar 

  • Barnabás B., Jäger K., Fehér A.: The effect of drought and heat stress on reproductive processes in cereals. — Plant Cell Environ. 31: 11–38, 2008.

    PubMed  Google Scholar 

  • Barthod S., Cerovic Z., Epron D.: Can dual chlorophyll fluorescence excitation be used to assess the variation in the content of UV-absorbing phenolic compounds in leaves of temperate tree species along a light gradient? — J. Exp. Bot. 58: 1753–1760, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Bernards M.A., Susag L.M., Bedgar D.L. et al.: Induced phenylpropanoid metabolism during suberization and lignification: A comparative analysis. — J. Plant Physiol. 157: 601–607, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Bilger W., Johnsen T., Schreiber U.: UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants. — J. Exp. Bot. 52: 2007–2014, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Bouchereau A., Clossais-Besnard N., Bensaoud A. et al.: Water stress effects on rapeseed quality. — Eur. J. Agron. 5: 19–30, 1996.

    Article  Google Scholar 

  • Burchard P., Bilger W., Weissenböck G.: Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. — Plant Cell Environ. 23: 1373–1380, 2000.

    Article  CAS  Google Scholar 

  • Close D.C., McArthur C., Hagerman A.E. et al.: Phenolic acclimation to ultraviolet-A irradiation in Eucalyptus nitens seedlings raised across a nutrient environment gradient. — Photosynthetica 45: 36–42, 2007.

    Article  CAS  Google Scholar 

  • Estiarte M., Filella I., Serra J., Peñuelas J.: Effects of nutrient and water stress on leaf phenolic content of peppers and susceptibility to generalist herbivore Helicoverpa armigera (Hubner). — Oecologia 99: 387–391, 1994.

    Article  CAS  PubMed  Google Scholar 

  • Fry S.C.: Phenolic components of the primary cell wall. — Biochem. J. 203: 493–504, 1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry S.C.: Phenolic components of the primary cell wall and their possible role in the hormonal regulation of growth. — Planta 146: 343–351, 1979.

    Article  CAS  PubMed  Google Scholar 

  • García-Plazaola J.I., Becerril J.M.: Effects of drought on photoprotective mechanisms in European beech (Fagus sylvatica L.) seedlings from different provenances. — Trees 14: 485–490, 2000.

    Article  Google Scholar 

  • Graça J., Santos S.: Suberin: a biopolyester of plants' skin. — Macromol. Biosci. 7: 128–135, 2007.

    Article  PubMed  Google Scholar 

  • Grzesiak S., Grzesiak M., Hura T.: Effects of soil drought during the vegetative phase of seedling growth on the uptake of 14CO2 and the accumulation and translocation of 14C in cultivars of field bean (Vicia faba L. var. minor) and field pea (Pisum sativum L.) of different drought tolerance. — J. Agron. Crop Sci. 183: 183–192, 1999.

    Article  CAS  Google Scholar 

  • Hoagland D.R.: Lectures on the Inorganic Nutrition of Plants. Pp. 136. Chronica Botanica Co., Waltham 1948.

    Google Scholar 

  • Hura T., Grzesiak S., Hura K. et al.: Physiological and biochemical tools useful in drought-tolerance detection in genotypes of winter triticale: Accumulation of ferulic acid correlates with drought tolerance. — Ann. Bot.-London 100: 767–775, 2007.

    Article  CAS  Google Scholar 

  • Hura T., Hura K., Grzesiak S.: Possible contribution of cell-wallbound ferulic acid in drought resistance and recovery in triticale seedlings. — J. Plant Physiol. 166: 1720–1733, 2009a.

    Article  CAS  PubMed  Google Scholar 

  • Hura T., Hura K., Grzesiak S.: Physiological and biochemical parameters for identification of QLs controlling the winter triticale drought tolerance at the seedling stage. — Plant Physiol. Bioch. 47: 210–214, 2009b.

    Article  CAS  Google Scholar 

  • Hura T., Hura K., Grzesiak M.: Soil drought applied during the vegetative growth of triticale modifies the physiological and biochemical adaptation to drought during the generative development. — J. Agron. Crop Sci. 197: 113–123, 2011.

    Article  Google Scholar 

  • Hura T., Hura K., Dziurka K. et al.: An increase in the content of cell wall-bound phenolics correlates with the productivity of triticale under soil drought. — J. Plant Physiol. 169: 1728–1736, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Hura T., Hura K., Ostrowska A. et al.: The cell wall-bound phenolics as a biochemical indicator of soil drought resistance in winter triticale. — Plant Soil Environ. 59: 189–195, 2013.

    Article  CAS  Google Scholar 

  • Ji X., Shiran B., Wan J. et al.: Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. — Plant Cell Environ. 33: 926–942, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Kamisaka S.,. Takeda S, Takahashi K., Shibata K.: Diferulic and ferulic acid in the cell wall of Avena coleoptiles: their relationships to mechanical properties of the cell wall. — Physiol. Plantarum 78: 1–7, 1990.

    Article  CAS  Google Scholar 

  • Kolb C.A., Käser M.A., Kopecký J. et al.: Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. — Plant Physiol. 127: 863–875, 2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolb C.A., Pfündel E.E.: Origins of non-linear and dissimilar relationships between epidermal UV absorbance and UV absorbance of extracted phenolics in leaves of grapevine and barley. — Plant Cell Environ. 28: 580–590, 2005.

    Article  CAS  Google Scholar 

  • Lu C., Zhang J.: Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. — Aust. J. Plant Physiol. 25: 883–892, 1998.

    Article  CAS  Google Scholar 

  • Ma Q.Q., Wang W., Li Y.H. et al.: Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. — J. Plant Physiol. 163: 165–175, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Mergoum M., Pfeiffer W.H., Pena R.J.: Triticale crop improvement: the CIMMYT programme.–In: Mergoum M., Gomez-Macpherson H. (ed.): Triticale Improvement and Production. FAO Plant Production and Protection Paper 179. Pp. 11–26. FAO, Rome 2004.

    Google Scholar 

  • Quarrie S.A., Stojanović J., Pekić S.: Improving drought resistance in small-grained cereals: A case study, progress and prospects. — Plant Growth Regul. 29: 1–21, 1999.

    Article  CAS  Google Scholar 

  • Rosales M.A., Ocampo E., Rodríguez-Valentín R.: Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. — Plant Physiol. Bioch. 56: 24–34, 2012.

    Article  CAS  Google Scholar 

  • Sánchez-Rodríguez E., Rubio-Wilhelmi M.M., Cervilla L.M.: Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. — Plant Sci. 178: 30–40, 2010.

    Article  Google Scholar 

  • Semerdjieva S.I., Sheffield E., Phoenix G.K.: Contrasting strategies for UV-B screening in sub-Arctic dwarf shrubs. — Plant Cell Environ. 26: 957–964, 2003.

    Article  PubMed  Google Scholar 

  • Shen X F., Dong Z.X., Chen Y.: Drought and UV-B radiation effect on photosynthesis and antioxidant parameters in soybean and maize. — Acta Physiol. Plant. 37: 1–8, 2015.

    Article  Google Scholar 

  • Singleton V.S., Rossi J.A.Jr.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagent. — Am. J. Enol. Viticult. 16: 144–157, 1965.

    CAS  Google Scholar 

  • Strasser R.J., Tsimilli-Michael M.: Stress in plants, from daily rhythm to global changes, detected and quantified by the JIPtest. — Chim. Nouvelle 75: 3321–3326, 2001.

    Google Scholar 

  • Strasser R.J., Tsimilli-Michael M., Qiang S., Goltsev V.: Simultaneous in vivo recording of prompt and delayed fluorescence and 820 nm reflection changes during drying and after rehydration of the resurrection plant Haberlea rhodopensis. — BBA-Bioenergetics 1797: 1313–1326, 2010.

    Article  CAS  PubMed  Google Scholar 

  • van Kooten O., Snel J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. — Photosynth. Res. 25: 147–150, 1990.

    Article  PubMed  Google Scholar 

  • Wakabayashi K., Hoson T., Kamisaka S.: Osmotic stress suppresses cell wall stiffening and the increase in cell wallbound ferulic and diferulic acids in wheat coleoptiles. — Plant Physiol. 113: 967–973, 1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou R., Su W.H., Zhang G.F. et al.: Relationship between flavonoids and photoprotection in shade-developed Erigeron breviscapus transferred to sunlight. — Photosynthetica 54: 201–209, 2016.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hura.

Additional information

Acknowledgments: The study was supported by the National Centre for Research and Development (Poland), project GENMARK (PBS1/A8/1/2012; PBS1 177 150).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hura, K., Ostrowska, A., Dziurka, K. et al. Photosynthetic apparatus activity in relation to high and low contents of cell wall-bound phenolics in triticale under drought stress. Photosynthetica 55, 698–704 (2017). https://doi.org/10.1007/s11099-017-0687-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0687-2

Additional key words

Navigation