Skip to main content

Advertisement

Log in

Enabling Combinatorial siRNA Delivery against Apoptosis-Related Proteins with Linoleic Acid and α-Linoleic Acid Substituted Low Molecular Weight Polyethylenimines

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Short interfering RNA (siRNA) therapy promises a new era in treatment of breast cancers but effective delivery systems are needed for clinical use. Since silencing complementary targets may offer improved efficacy, this study was undertaken to identify non-viral carriers for combinatorial siRNA delivery for more effective therapy.

Methods

A library of lipid-substituted polymers from low molecular weight polyethyleneimine (PEI), linoleic acid (LA) and α-linoleic acid (αLA) with amide or thioester linkages was prepared and investigated for delivering Mcl-1, survivin and STAT5A siRNAs in breast cancer cells.

Results

The effective polymers formed 80–190 nm particles with similar zeta-potentials, but the serum stability was greater for complexes formed with amide-linked lipid conjugates. The LA and αLA substitutions, with the low molecular weight PEI (1.2 kDa and 2.0 kDa) were able to deliver siRNA effectively to cells and retarded the growth of breast cancer cells. The amide-linked lipid substituents showed higher cellular delivery of siRNA as compared to thioester linkages. Upon combinational delivery of siRNAs, growth of MCF-7 cells was inhibited to a greater extent with 2.0PEI-LA9 mediated delivery of Mcl-1 combined survivin siRNAs as compared to individual siRNAs. The qRT-PCR analysis confirmed the decrease in mRNA levels of target genes with specific siRNAs and 2.0PEI-LA9 was the most effective polymer for delivering siRNAs (either single or in combination).

Conclusions

This study yielded effective siRNA carriers for combinational delivery of siRNAs. Careful choice of siRNA combinations will be critical since targeting individual genes might alter the expression of other critical mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Devi GR. siRNA-based approaches in cancer therapy. Cancer Gene Ther. 2006;13(9):819–29.

    Article  CAS  PubMed  Google Scholar 

  2. Akar U, Chaves-Reyez A, Barria M, Tari A, Sanguino A, Kondo Y, et al. Lopez- Berestein, G.; Ozpolat, B. silencing of Bcl-2 expression by small interfering RNA induces autophagic cell death in MCF-7 breast cancer cells. Autophagy. 2008;4(5):669–79.

    Article  CAS  PubMed  Google Scholar 

  3. Lu R-M, Chen M-S, Chang D-K, Chiu C-Y, Lin W-C, Yan S-L, et al. Targeted Drug Delivery Systems Mediated by a Novel Peptide in Breast Cancer Therapy and Imaging. PLoS One. 2013;8(6):e66128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001;15(2):188–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Oh Y-K, Park TG. siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev. 2009;61(10):850–62.

    Article  CAS  PubMed  Google Scholar 

  6. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.

    Article  CAS  PubMed  Google Scholar 

  7. Simstein R, Burow M, Parker A, Weldon C, Beckman B. Apoptosis, Chemoresistance, and breast Cancer: insights from the MCF-7 cell model system. Exp Biol Med. 2003;228(9):995–1003.

    Article  CAS  Google Scholar 

  8. Bold RJ, Termuhlen PM, McConkey DJ. Apoptosis, cancer and cancer therapy. Surg Oncol. 1997;6(3):133–42.

    Article  CAS  PubMed  Google Scholar 

  9. Frasor J, Danes JM, Komm B, Chang KCN, Lyttle CR, Katzenellenbogen BS. Profiling of estrogen up- and Down-regulated gene expression in human breast Cancer cells: insights into gene networks and pathways underlying estrogenic control of proliferation and cell phenotype. Endocrinology. 2003;144(10):4562–74.

    Article  CAS  PubMed  Google Scholar 

  10. Alvarez JV, Frank DA. Genome-wide analysis of STAT target genes: elucidating the mechanism of STAT-mediated oncogenesis. Cancer Biol Ther. 2004;3(11):1045–50.

    Article  CAS  PubMed  Google Scholar 

  11. Booy EP, Henson ES, Gibson SB. Epidermal growth factor regulates mcl-1 expression through the MAPK-Elk-1 signalling pathway contributing to cell survival in breast cancer. Oncogene. 2011;30(20):2367–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mitchell C, Yacoub A, Hossein H, Pandya Martin A, Bareford MD, Eulitt PJ, et al. Inhibition of MCL-1 in breast cancer cells promotes cell death in vitro and in vivo. Cancer Biol Ther. 2010;10(9):903–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci. 1993;90(8):3516–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quinn BA, Dash R, Azab B, Sarkar S, Das SK, Kumar S, et al. Targeting Mcl-1 for the therapy of cancer. Expert Opin Investig Drugs. 2011;20(10):1397–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akgul C. Mcl-1 is a potential therapeutic target in multiple types of cancer. Cell Mol Life Sci. 2009;66(8):1326–36.

    Article  CAS  PubMed  Google Scholar 

  16. Shore GC, Warr MR. Unique biology of mcl-1: therapeutic opportunities 1 in Cancer. Curr Mol Med. 2008;8(2):138–47.

    Article  PubMed  Google Scholar 

  17. Sieghart W, Losert D, Strommer S, Cejka D, Schmid K, Rasoul-Rockenschaub S, et al. Mcl-1 overexpression in hepatocellular carcinoma: a potential target for antisense therapy. J Hepatol. 2006;44(1):151–7.

    Article  CAS  PubMed  Google Scholar 

  18. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, et al. Proapoptotic Bak is sequestered by mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 2005;19(11):1294–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mita AC, Mita MM, Nawrocki ST, Giles FJ. Survivin: key regulator of mitosis and apoptosis and novel target for Cancer therapeutics. Clin Cancer Res. 2008;14(16):5000–5.

    Article  CAS  PubMed  Google Scholar 

  20. Altieri DC. Survivin, Versatile modulation of cell division and apoptosis in cancer. Oncogene. 2003;22(53):8581–9.

  21. Zaffaroni N, Pannati M, Diadone MG. Survivin as a target for new anticancer interventions. J Cell Mol Med. 2005;9(2):360–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Altieri DC. Validating survivin as a cancer therapeutic target. Nat Rev Cancer. 2003;3(1):46–54.

    Article  CAS  PubMed  Google Scholar 

  23. Virrey JJ, Guan S, Li W, Schönthal AH, Chen TC, Hofman FM. Increased Survivin expression confers Chemoresistance to tumor-associated endothelial cells. Am J Pathol. 2008;173(2):575–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang H, Ye Y-F. Effect of survivin siRNA on biological behaviour of breast cancer MCF7 cells. Asian Pac J Trop Med. 2015;8(3):225–8.

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Gao Y, Chen L, Huang Y, Li Y. Downregulation of survivin expression and enhanced chemosensitivity of MCF-7 cells to adriamycin by PDMAE/survivin shRNA complex nanoparticles. Int J Pharm. 2011;405(1):188–95.

    Article  CAS  PubMed  Google Scholar 

  26. Yu H, Jove R. The STATs of cancer [mdash] new molecular targets come of age. Nat Rev Cancer. 2004;4(2):97–105.

    Article  CAS  PubMed  Google Scholar 

  27. Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng C-X, et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol. 2004;24(18):8037–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turkson J. STAT proteins as novel targets for cancer drug discovery. Expert Opin Ther Targets. 2004;8(5):409–22.

    Article  CAS  PubMed  Google Scholar 

  29. Cotarla I, Ren S, Zhang Y, Gehan E, Singh B, Furth P. Stat5a is activated and nuclear localized in a high proportion of human breast cancers. Int J Cancer. 2003;108:665–71.

    Article  CAS  Google Scholar 

  30. Nevalainen MT, Xie J, Torhorst J, Bubendorf L, Haas P, Kononen J, et al. Signal transducer and activator of transcription-5 activation and breast cancer prognosis. J Clin Oncol. 2004;22(11):2053–60.

    Article  CAS  PubMed  Google Scholar 

  31. Richards Grayson AC, Doody AM, Putnam D. Biophysical and structural characterization of Polyethylenimine-mediated siRNA delivery in vitro. Pharm Res. 2006;23(8):1868–76.

    Article  CAS  Google Scholar 

  32. Günther M, Lipka J, Malek A, Gutsch D, Kreyling W, Aigner A. Polyethylenimines for RNAi40 mediated gene targeting in vivo and siRNA delivery to the lung. Eur J Pharm Biopharm. 2011;77(3):438–49.

    Article  PubMed  CAS  Google Scholar 

  33. Urban-Klein B, Werth S, Abuharbeid S, Czubayko F, Aigner A. RNAi-1 mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 2004;12(5):461–6.

    Article  CAS  Google Scholar 

  34. Aigner A. Gene silencing through RNA interference (RNAi) in vivo: strategies based on the direct application of siRNAs. J Biotechnol. 2006;124(1):12–25.

    Article  CAS  PubMed  Google Scholar 

  35. Godbey W, Wu KK, Mikos AG. Size matters: molecular weight affects the efficiency of poly (ethyleneimine) as a gene delivery vehicle. J Biomed Mater Res. 1999;45(3):268–75.

    Article  CAS  PubMed  Google Scholar 

  36. Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials. 2003;24(7):1121–31.

    Article  CAS  PubMed  Google Scholar 

  37. Liu Z, Zhang Z, Zhou C, Jiao Y. Hydrophobic modifications of cationic polymers for gene delivery. Prog Polym Sci. 2010;35(9):1144–62.

    Article  CAS  Google Scholar 

  38. Incani V, Lavasanifar A, Uludag H. Lipid and hydrophobic modification of cationic carriers on route to superior gene vectors. Softmat. 2010;6:2124–38.

    CAS  Google Scholar 

  39. Teo PY, Yang C, Hedrick JL, Engler AC, Coady DJ, Ghaem-Maghami S, et al. Hydrophobic modification of low molecular weight polyethylenimine for improved gene transfection. Biomaterials. 2013;34(32):7971–9.

    Article  CAS  PubMed  Google Scholar 

  40. Guo G, Zhou L, Chen Z, Chi W, Yang X, Wang W, et al. Alkane-modified low-molecular weight polyethylenimine with enhanced gene silencing for siRNA delivery. Int J Pharm. 2013;450(1):44–52.

    Article  CAS  PubMed  Google Scholar 

  41. Philipp A, Zhao X, Tarcha P, Wagner E, Zintchenko A. Hydrophobically modified Oligoethylenimines as highly efficient transfection agents for siRNA delivery. Bioconjug Chem. 2009;20(11):2055–61.

    Article  CAS  PubMed  Google Scholar 

  42. Alshamsan A, Haddadi A, Incani V, Samuel J, Lavasanifar A, Uludağ H. Formulation and delivery of siRNA by oleic acid and stearic acid modified Polyethylenimine. Mol Pharm. 2009;6(1):121–33.

    Article  CAS  PubMed  Google Scholar 

  43. Ytzhak S, Weitman H, Ehrenberg B. The effect of lipid composition on the permeability of fluorescent markers from photosensitized membranes. Photochem Photobiol. 2013;89(3):619–24.

    Article  CAS  PubMed  Google Scholar 

  44. Valencia-Serna J, Chevallier P, Kc RB, Laroche G, Uludağ H. Fibronectin-modified surfaces for evaluating the influence of cell adhesion on sensitivity of leukemic cells to siRNA nanoparticles. Nanomed. 2016;11(9):1123–38.

    Article  CAS  Google Scholar 

  45. Remant Bahadur KC, Kucharski C, Uludağ H. Additive nanocomplexes of cationic lipopolymers for improved non-viral gene delivery to mesenchymal stem cells. J Mater Chem B. 2015;3:3972–82.

    Article  CAS  Google Scholar 

  46. K C RB, Thapa B, Valencia-Serna J, Aliabadi HM, Uludağ H. Nucleic acid combinations: A new frontier for cancer treatment. J Control Release. 2017;256:153–69.

    Article  CAS  PubMed  Google Scholar 

  47. Landry B, Aliabadi HM, Samuel A, Gül-Uludağ H, Jiang X, Kutsch O, et al. Effective non-viral delivery of siRNA to acute myeloid leukemia cells with lipid-substituted polyethylenimines. PLoS One. 2012;7(8):e44197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Parmar MB, Aliabadi HM, Mahdipoor P, Kucharski C, Maranchuk R, Hugh JC, et al. Targeting Cell Cycle Proteins in Breast Cancer Cells with siRNA by Using Lipid-Substituted Polyethylenimines. Frontiers in Bioengineering and Biotechnology. 2015;3:14.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Valencia-Serna J, Gul-Uludağ H, Mahdipoor P, Jiang X, Uludağ H. Investigating siRNA delivery to chronic myeloid leukemia K562 cells with lipophilic polymers for therapeutic BCR-ABL down6 regulation. J Control Release. 2013;172(2):495–503.

    Article  CAS  PubMed  Google Scholar 

  50. Parmar MB, Arteaga Ballesteros BE, Fu T, K C RB, Montazeri Aliabadi H, Hugh JC, et al. Multiple siRNA delivery against cell cycle and anti-apoptosis proteins using lipid-substituted polyethylenimine in triple-negative breast cancer and nonmalignant cells. J Biomed Mater Res A. 2016;104(12):3031–44.

    Article  CAS  PubMed  Google Scholar 

  51. Aliabadi HM, Landry B, Mahdipoor P, Hsu CYM, Uludağ H. Effective down-regulation of breast Cancer resistance protein (BCRP) by siRNA delivery using lipid-substituted aliphatic polymers. Eur J Pharm Biopharm. 2012;81(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  52. Montazeri Aliabadi H, Landry B, Mahdipoor P, Uludağ H. Induction of apoptosis by Survivin silencing through siRNA delivery in a human breast Cancer cell line. Mol Pharm. 2011;8(5):1821–30.

    Article  PubMed  CAS  Google Scholar 

  53. Aliabadi HM, Maranchuk R, Kucharski C, Mahdipoor P, Hugh J, Uludağ H. Effective response of doxorubicin-sensitive and -resistant breast cancer cells to combinational siRNA therapy. J Control Release. 2013;172(1):219–28.

    Article  CAS  PubMed  Google Scholar 

  54. Placzek WJ, Wei J, Kitada S, Zhai D, Reed JC, Pellecchia M. A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis. 2010;1:e40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Du W, Wang Y-C, Hong J, Su W-Y, Lin Y-W, Lu R, et al. STAT5 isoforms regulate colorectal cancer cell apoptosis via reduction of mitochondrial membrane potential and generation of reactive oxygen species. J Cell Physiol. 2012;227(6):2421–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Uludağ.

Additional information

Guest Editor: Sheng Qi

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plianwong, S., Thapa, B., KC, R. et al. Enabling Combinatorial siRNA Delivery against Apoptosis-Related Proteins with Linoleic Acid and α-Linoleic Acid Substituted Low Molecular Weight Polyethylenimines. Pharm Res 37, 46 (2020). https://doi.org/10.1007/s11095-020-2770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-020-2770-9

Key Words

Navigation