Skip to main content

Advertisement

Log in

Evaluation of a Potential Clinical Significant Drug-Drug Interaction between Digoxin and Bupropion in Cynomolgus Monkeys

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

A three-period digoxin-bupropion drug-drug interaction study was performed in cynomolgus monkeys to assess the effect of bupropion and its metabolites on digoxin disposition.

Methods

Monkeys were administered either an i.v. infusion (0.1 mg/kg) or an oral dose of digoxin (0.2 mg/kg) as control. In single-dosing period, monkeys received an i.v. infusion of bupropion at 1.5 mg/kg together with an infusion or oral dosing of digoxin, respectively. During multiple-dosing period, bupropion was orally administered q.d. at 7.72 mg/kg for 12-day. Then it was co-administered with an i.v. infusion or oral dosing of digoxin, respectively. Renal expression of OATP4C1 and P-gp was examined.

Results

Bupropion significantly increased i.v. digoxin CLrenal0-48h by 1 fold in single-dosing period. But it had no effect on the systemic disposition of digoxin. In multiple-dosing period, bupropion significantly increased oral digoxin CLrenal0-48h, CLtotal0-48h, CLnon-renal0-48h and decreased its plasma exposure. Bupropion and its metabolites did not alter creatinine clearance. OATP4C1 was located at the basolateral membrane of proximal tubule cells, while P-gp was on the apical membrane.

Conclusions

The effect of multiple dosing with bupropion on the pharmacokinetics of digoxin is more pronounced. The magnitude of increase in digoxin CLrenal0-48h contributed to the decrease in AUC of digoxin in some extent, but certainly is not the major driving force. The lack of systemic exposure after a single dose but a significant decrease in exposure mediated by an increase in the digoxin CLnon-renal0-48h with repeated dosing is likely to be the more clinically relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AQP1:

Aquaporin 1

AUC0-∞ :

Area under the plasma concentration-time curve from 0 to infinity

AUC0-48h :

Area under the curve from 0 to 48 h

BUP:

Bupropion

CLrenal0-48h :

Renal clearance from 0 to 48 h

CLtotal0-48h :

Total clearance from 0 to 48 h

CLnon-renal0-48h :

Non-renal clearance from 0 to 48 h

CLtotal :

Total clearance

CLfiltration :

Filtration clearance

CLrenal :

Renal clearance

CLnon-renal :

Non-renal clearance

CLcr :

Creatinine clearance

Cmax :

Maximal plasma concentration

DIG:

Digoxin

DDI:

Drug-drug interaction

EBUP:

Erythro-hydrobupropion

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

HF:

Heart failure

HBUP:

Hydroxybupropion

LC:

Liquid chromatography

MS/MS:

Tandem mass spectrometry

OATP:

Organic anion-transporting polypeptide

P-gp:

P-glycoprotein

SSRIs:

Selective serotonin reuptake inhibitors

TCAs:

Tricyclic antidepressants

TBUP:

Threo-hydrobupropion

Tmax :

Time of maximal plasma concentration

t1/2 :

Terminal half-life

Vss :

Volume of distribution at steady-state

References

  1. Diez-Quevedo C, Lupon J, Gonzalez B, Urrutia A, Cano L, Cabanes R, et al. Depression, antidepressants, and long-term mortality in heart failure. Int J Cardiol. 2013;167(4):1217–25.

    Article  PubMed  Google Scholar 

  2. Brouwers C, Christensen SB, Damen NL, Denollet J, Torp-Pedersen C, Gislason GH, et al. Antidepressant use and risk for mortality in 121,252 heart failure patients with or without a diagnosis of clinical depression. Int J Cardiol. 2016;203:867–73.

  3. Greig SL, Keating GM. Naltrexone ER/bupropion ER: a review in obesity management. Drugs. 2015;75(11):1269–80.

    Article  CAS  PubMed  Google Scholar 

  4. Cinciripini PM, Green CE, Robinson JD, Karam-Hage M, Engelmann JM, Minnix JA, et al. Benefits of varenicline vs. bupropion for smoking cessation: a Bayesian analysis of the interaction of reward sensitivity and treatment. Psychopharmacology. 2017;234(11):1769–79.

  5. Jefferson JW, Pradko JF, Muir KT. Bupropion for major depressive disorder: pharmacokinetic and formulation considerations. Clin Ther. 2005;27(11):1685–95.

    Article  CAS  PubMed  Google Scholar 

  6. Connarn JN, Zhang X, Babiskin A, Sun D. Metabolism of bupropion by carbonyl reductases in liver and intestine. Drug Metab Dispos. 2015;43(7):1019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sager JE, Price LS, Isoherranen N. Stereoselective metabolism of bupropion to OH-bupropion, threohydrobupropion, erythrohydrobupropion, and 4'-OH-bupropion in vitro. Drug Metab Dispos. 2016;44(10):1709–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gufford BT, Lu JB, Metzger IF, Jones DR, Desta Z. Stereoselective Glucuronidation of bupropion metabolites in vitro and in vivo. Drug Metab Dispos. 2016;44(4):544–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schroeder DH. Metabolism and kinetics of bupropion. J Clin Psychiatry. 1983;44(5 Pt 2):79–81.

    CAS  PubMed  Google Scholar 

  10. Kirby BJ, Collier AC, Kharasch ED, Whittington D, Thummel KE, Unadkat JD. Complex drug interactions of the HIV protease inhibitors 3: effect of simultaneous or staggered dosing of digoxin and ritonavir, nelfinavir, rifampin, or bupropion. Drug Metab Dispos. 2012;40(3):610–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He J, Yu Y, Prasad B, Chen X, Unadkat JD. Mechanism of an unusual, but clinically significant, digoxin-bupropion drug interaction. Biopharm Drug Dispos. 2014;35(5):253–63.

    Article  CAS  PubMed  Google Scholar 

  12. Greiner B, Eichelbaum M, Fritz P, Kreichgauer HP, von Richter O, Zundler J, et al. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J Clin Invest. 1999;104(2):147–53.

  13. Ambrosy AP, Butler J, Ahmed A, Vaduganathan M, van Veldhuisen DJ, Colucci WS, et al. The use of digoxin in patients with worsening chronic heart failure reconsidering an old drug to reduce hospital admissions. J Am Coll Cardiol. 2014;63(18):1823–32.

  14. Iisalo E. Clinical pharmacokinetics of digoxin. Clin Pharmacokinet. 1977;2(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  15. Bavendiek U, Aguirre Davila L, Koch A, Bauersachs J. Assumption versus evidence: the case of digoxin in atrial fibrillation and heart failure. Eur Heart J. 2017;38(27):2095–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Gomes T, Mamdani MM, Juurlink DN. Macrolide-induced digoxin toxicity: a population-based study. Clin Pharmacol Ther. 2009;86(4):383–6.

    Article  CAS  PubMed  Google Scholar 

  17. Juurlink DN, Mamdani M, Kopp A, Laupacis A, Redelmeier DA. Drug-drug interactions among elderly patients hospitalized for drug toxicity. JAMA. 2003;289(13):1652–8.

    Article  CAS  PubMed  Google Scholar 

  18. Rathore SS, Curtis JP, Wang Y, Bristow MR, Krumholz HM. Association of serum digoxin concentration and outcomes in patients with heart failure. JAMA. 2003;289(7):871–8.

    Article  CAS  PubMed  Google Scholar 

  19. Tanigawara Y, Okamura N, Hirai M, Yasuhara M, Ueda K, Kioka N, et al. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther. 1992;263(2):840–5.

    CAS  PubMed  Google Scholar 

  20. Englund G, Hallberg P, Artursson P, Michaelsson K, Melhus H. Association between the number of coadministered P-glycoprotein inhibitors and serum digoxin levels in patients on therapeutic drug monitoring. BMC Med. 2004;2.

  21. Fenner KS, Troutman MD, Kempshall S, Cook JA, Ware JA, Smith DA, et al. Drug-drug interactions mediated through P-glycoprotein: clinical relevance and in vitro-in vivo correlation using digoxin as a probe drug. Clin Pharmacol Ther. 2009;85(2):173–81.

  22. Taub ME, Mease K, Sane RS, Watson CA, Chen L, Ellens H, et al. Digoxin is not a substrate for organic anion-transporting polypeptide transporters OATP1A2, OATP1B1, OATP1B3, and OATP2B1 but is a substrate for a sodium-dependent transporter expressed in HEK293 cells. Drug Metab Dispos. 2011;39(11):2093–102.

  23. Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci U S A. 2004;101(10):3569–74.

  24. Yamaguchi H, Sugie M, Okada M, Mikkaichi T, Toyohara T, Abe T, et al. Transport of estrone 3-sulfate mediated by organic anion transporter OATP4C1: estrone 3-sulfate binds to the different recognition site for digoxin in OATP4C1. Drug Metab Pharmacokinet. 2010;25(3):314–7.

  25. Sato T, Mishima E, Mano N, Abe T, Yamaguchi H. Potential drug interactions mediated by renal organic anion transporter OATP4C1. J Pharmacol Exp Ther. 2017;362(2):271–7.

    Article  CAS  PubMed  Google Scholar 

  26. Kuo KL, Zhu H, McNamara PJ, Leggas M. Localization and functional characterization of the rat Oatp4c1 transporter in an in vitro cell system and rat tissues. PLoS One. 2012;7(6):e39641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rytting E, Wang X, Vernikovskaya DI, Zhan Y, Bauer C, Abdel-Rahman SM, et al. Metabolism and disposition of bupropion in pregnant baboons (Papio cynocephalus). Drug Metab Dispos. 2014;42(10):1773–9.

  28. Weller REBJ, Málaga CA, Buschbom RL, Ragan HA. Renal clearance and excretion of endogenous substances in the owl monkey. Am J Primatol. 1992;28(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  29. Liu X, Shen Y, Xie J, Bao H, Cao Q, Wan R, et al. A mutation in the CACNA1C gene leads to early repolarization syndrome with incomplete penetrance: a Chinese family study. PLoS One. 2017;12(5):e0177532.

  30. Nishimura T, Kato Y, Amano N, Ono M, Kubo Y, Kimura Y, et al. Species difference in intestinal absorption mechanism of etoposide and digoxin between cynomolgus monkey and rat. Pharm Res. 2008;25(11):2467–76.

  31. Akabane T, Tabata K, Kadono K, Sakuda S, Terashita S, Teramura T. A comparison of pharmacokinetics between humans and monkeys. Drug Metab Dispos. 2010;38(2):308–16.

    Article  CAS  PubMed  Google Scholar 

  32. Benet LZ, Hoener BA. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–21.

    Article  CAS  PubMed  Google Scholar 

  33. Johnston AJ, Ascher J, Leadbetter R, Schmith VD, Patel DK, Durcan M, et al. Pharmacokinetic optimisation of sustained-release bupropion for smoking cessation. Drugs. 2002;62(Suppl 2):11–24.

  34. Bleasby K, Castle JC, Roberts CJ, Cheng C, Bailey WJ, Sina JF, et al. Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: a resource for investigations into drug disposition. Xenobiotica. 2006;36(10–11):963–88.

  35. Hsyu PH, Singh A, Giargiari TD, Dunn JA, Ascher JA, Johnston JA. Pharmacokinetics of bupropion and its metabolites in cigarette smokers versus nonsmokers. J Clin Pharmacol. 1997;37(8):737–43.

    Article  CAS  PubMed  Google Scholar 

  36. Stewart JJ, Berkel HJ, Parish RC, Simar MR, Syed A, Bocchini JA Jr, et al. Single-dose pharmacokinetics of bupropion in adolescents: effects of smoking status and gender. J Clin Pharmacol. 2001;41(7):770–8.

  37. Seward DJ, Koh AS, Boyer JL, Ballatori N. Functional complementation between a novel mammalian polygenic transport complex and an evolutionarily ancient organic solute transporter, OSTalpha-OSTbeta. J Biol Chem. 2003;278(30):27473–82.

    Article  CAS  PubMed  Google Scholar 

  38. Ballatori N. Biology of a novel organic solute and steroid transporter, OSTalpha-OSTbeta. Exp Biol Med (Maywood). 2005;230(10):689–98.

    Article  CAS  Google Scholar 

  39. Kobayashi Y, Kawakami K, Ohbayashi M, Kohyama N, Yamamoto T. Ribosomal protein L3 mediated the transport of digoxin in Xenopus laevis oocyte. J Toxicol Sci. 2010;35(6):827–34.

    Article  CAS  PubMed  Google Scholar 

  40. Saha JR, Butler VP Jr, Neu HC, Lindenbaum J. Digoxin-inactivating bacteria: identification in human gut flora. Science. 1983;220(4594):325–7.

    Article  CAS  PubMed  Google Scholar 

  41. Koren G, Klein J, Silverman M. Evidence of digoxin metabolism by the kidney. Can J Physiol Pharmacol. 1987;65(12):2500–3.

    Article  CAS  PubMed  Google Scholar 

  42. Connarn JN, Luo R, Windak J, Zhang X, Babiskin A, Kelly M, et al. Identification of non-reported bupropion metabolites in human plasma. Biopharm Drug Dispos. 2016;37(9):550–60.

  43. Sager JE, Choiniere JR, Chang J, Stephenson-Famy A, Nelson WL, Identification IN. Structural characterization of three new metabolites of bupropion in humans. ACS Med Chem Lett. 2016;7(8):791–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Scotcher D, Jones CR, Galetin A, Rostami-Hodjegan A. Delineating the role of various factors in renal disposition of digoxin through application of physiologically based kidney model to renal impairment populations. J Pharmacol Exp Ther. 2017;360(3):484–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments and Disclosures

This work was supported by the National Nature Science Foundation of China (81530013 81603188 81370288), the China Postdoctoral Science Foundation (2017 M612165), Jiangxi Postdoctoral Science Foundation (2017KY24), the Natural Science Foundation of Jiangxi Province (20181BAB215045, 20151BAB215041), the Hospital Foundation of the second affiliated hospital of Nanchang University (2014YNQN2001), the Foundation of Educational Commission of Jiangxi Province (GJJ170156). We thank Prof. Jashvant Unadkat from University of Washington for critical review of the manuscript. None to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunhua Xia or Jiake He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Yu, Y., Lai, W. et al. Evaluation of a Potential Clinical Significant Drug-Drug Interaction between Digoxin and Bupropion in Cynomolgus Monkeys. Pharm Res 36, 1 (2019). https://doi.org/10.1007/s11095-018-2525-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2525-z

Key words

Navigation