Skip to main content
Log in

Sintered Microsphere Scaffolds for Controlled Release and Tissue Engineering

  • Commentary
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

REFERENCES

  1. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  PubMed  CAS  Google Scholar 

  2. Borden M, Attawia M, Khan Y, Laurencin CT. Tissue engineering microsphere-based matrices for bone repair:design and evaluation. Biomaterials. 2002;23:551–9.

    Article  PubMed  CAS  Google Scholar 

  3. Shi XT, Wang YJ, Ren L, Lai C, Gong YH, Wang DA. A novel hydrophilic poly(lactide-co-glycolide)/lecithin hybrid microspheres sintered scaffold for bone repair. J Biomed Mater Res. 2010;92A:963–72.

    CAS  Google Scholar 

  4. Borden M, El-Amin SF, Attawia M, Laurencin CT. Structural and human cellular assessment of a novel microsphere-based tissue engineering scaffold for bone repair. Biomaterials. 2003;24:597–609.

    Article  PubMed  CAS  Google Scholar 

  5. Brown JL, Nair LS, Laurencin CT. Solvent/non-solvent sintering: a novel route to creat porous microsphere scaffolds for tissue regeneration. J Biomed Mater Res. 2008;86B:396–406.

    Article  CAS  Google Scholar 

  6. Jaklenec A, Wan E, Murray ME, Mathiowitz E. Novel scaffolds fabricated from protein-loaded microspheres for tissue engineering. Biomaterials. 2008;29:185–92.

    Article  PubMed  CAS  Google Scholar 

  7. Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.

    Article  PubMed  CAS  Google Scholar 

  8. Luciani A, Coccoli V, Orsi S, Ambrosio L, Netti PA. PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials. 2008;29:4800–7.

    Article  PubMed  CAS  Google Scholar 

  9. Nukavarapu SP, Kumar SG, Brown JL, Krogman NR, Weikel AL, Hindenlang MD, et al. Polyphosphazene/Nano-hydroxyapatite composite microsphere scaffolds for bone tissue engineering. Biomacromolecules. 2008;9:1818–25.

    Article  PubMed  CAS  Google Scholar 

  10. Abdel-Fattah WI, Jiang T, EI-Bassyouni GE, Laurencin CT. Synthesis, characterization of chitosans and fabrication of sintered chitosan microsphere matrices for bone tissue engineering. Acta Biomater. 2007;3:503–14.

    Article  PubMed  CAS  Google Scholar 

  11. Shi XT, Wang YJ, Ren L, Huang W, Wang D-A. A protein /antibiotic releasing poly(lactic-co-glycolic acid)/lecithin scaffold for bone repair applications. Int J Pharm. 2009;373:85–92.

    Article  PubMed  CAS  Google Scholar 

  12. Jiang T, Abdel-Fattah WI, Laurencin CT. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering. Biomaterials. 2006;27:4894–903.

    Article  PubMed  CAS  Google Scholar 

  13. Jiang T, Khan Y, Nair LS, Adbel-Fattah WI, Laurencin CT. Functionalization of chitosan/poly(lactic-co-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering. J Biomed Mater Res. 2010;93A:1193–208.

    CAS  Google Scholar 

  14. Shi XT, Wang YJ, Ren L, Gong Y, Wang D-A. Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications. Pharm Res. 2009;26:422–30.

    Article  PubMed  CAS  Google Scholar 

  15. Kofron MD, Cooper JA, Kumbar SG, Laurencin CT. Novel tubular composite matrix for bone repair. J Biomed Mater Res. 2007;82A:415–25.

    Article  CAS  Google Scholar 

  16. Lv Q, Nair L, Laurencin CT. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors. J Biomed Mater Res. 2009;91A:679–91.

    Article  CAS  Google Scholar 

  17. Jabbarzadeh E, Nair LS, Khan YM, Deng M, Laurencin CT. Apatite nano-crystalline surface modification of poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering: implications for protein adsorption. J Biomater Sci Polym Ed. 2007;18:1141–52.

    Article  PubMed  CAS  Google Scholar 

  18. Cushnie EK, Khan YM, Laurencin CT. Amorphous hydroxyapatite-sintered polymeric scaffolds for bone tissue regeneration: physical characterization studies. J Biomed Mater Res. 2008;84A:54–62.

    Article  CAS  Google Scholar 

  19. Hench LL, Paschall HA. Direct chemical bond of bioactive glass-ceramic materials to bone ans muscle. J Biomed Mater Res. 1973;7:25–42.

    Article  PubMed  CAS  Google Scholar 

  20. Yao J, Radin S, Leboy PS, Ducheyne P. The effect of bioactive glass content on sythesis and bioactivity of composite poly(lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering. Biomaterials. 2005;26:1935–43.

    Article  PubMed  CAS  Google Scholar 

  21. Lu HH, El-Amin SF, Scott KD, Laurencin CT. Three-dimentional, bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells in vitro. J Biomed Mater Res. 2003;64A:465–74.

    Article  CAS  Google Scholar 

  22. Shi X, Wang Y, Ren L, Zhao N, Gong Y, Wang D-A. Novel mesoporous silica based antibiotic releasing scaffold for bone repair. Acta Biomater. 2009;5:1697–707.

    Article  PubMed  CAS  Google Scholar 

  23. Jaklenec A, Hinckfuss A, Bilgen B, Ciombor DM, Aaron R, Mathiowitz E. Sequential release of bioactive IGF-I and TGF-β1 from PLGA microsphere-based scaffolds. Biomaterials. 2008;29:1518–25.

    Article  PubMed  CAS  Google Scholar 

  24. Jabbarzadeh E, Jiang T, Deng M, Nair LS, Khan YM, Laurencin CT. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering. Biotechnol Bioeng. 2007;98:1094–102.

    Article  PubMed  CAS  Google Scholar 

  25. Kofron MD, Griswold A, Kumar SG, Martin K, Wen XJ, Laurencin CT. The implication of polymer selection in regenerative medicine: a comparison of amorphous and semi-crystalline polymer for tissue regeneration. Adv Funct Mater. 2009;19:1351–9.

    Article  CAS  Google Scholar 

  26. Shi XT, Wang YJ, Varshney RR, Ren L, Gong Y, Wang D-A. Microsphere-based drug releasing scaffolds for inducing osteogenesis of human mesenchymal stem cell in vitro. Eur J Pharm Sci. 2010;29:59–67.

    Article  CAS  Google Scholar 

  27. Shi XT, Ren L, Tian M, Yu JK, Huang W, Du C, et al. In vivo and in vitro osteogenesis of stem cells induced by controlled release of drugs from microspherical scaffolds. J Mater Chem. 2010;20:9140–8.

    Article  CAS  Google Scholar 

  28. Wang Y, Shi X, Ren L, Wang C, Wang D-A. Porous poly(lactic-co-glycolide) microsphere sintered scaffolds for tissue repair applications. Mater Sci Eng C. 2009;29:2502–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-An Wang.

Additional information

Authors Xuetao Shi and Kai Su contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Su, K., Varshney, R.R. et al. Sintered Microsphere Scaffolds for Controlled Release and Tissue Engineering. Pharm Res 28, 1224–1228 (2011). https://doi.org/10.1007/s11095-010-0359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0359-4

KEY WORDS

Navigation