Skip to main content
Log in

Plasma Treated Sepiolite: A New Adsorbent for Removal of Malachite Green from Contaminated Water

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Surface modification of clay materials has become an important issue to improve the efficiency of the adsorbent. The adsorption capacity of the clay material can be increased by thermal or chemical modifications. In this study, plasma technology was applied for the surface modification of sepiolite to improve the removal of malachite green from contaminated water. This study is novel in preparing and examining the effectiveness of sepiolite in adsorption of malachite green from contaminated water. To achieve the aim, plasma application time, CO2, N2, or Ar plasma gases effect and pH were investigated with respect to the adsorption capacity of MG. The surface properties of raw and plasma treated sepiolite were investigated with SEM, FTIR, BET surface area and XRD measurements. The monolayer adsorption capacity was found to be 143 mg/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Culp SJ, Beland FA (1996) J Am Colloid Toxicol 15:219–238

    Article  Google Scholar 

  2. Srivastava S, Rangana S, Roy D (2004) Aquat Toxicol 66:319–329

    Article  CAS  Google Scholar 

  3. Saka C, Şahin Ö, Küçük MM (2012) Int J Environ Sci Technol 9:379–394

    Article  CAS  Google Scholar 

  4. Saka C, Şahin Ö, Demir H, Kahyaoğlu M (2011) Sep Sci Technol 46:507–517

    Article  CAS  Google Scholar 

  5. Saka C, Şahin Ö (2011) Color Technol 127:246–255

    Article  CAS  Google Scholar 

  6. Saka C, Şahin Ö, Çelik MS (2012) Energy Sources Part A 34:1577–1590

    Article  CAS  Google Scholar 

  7. Saka C, Şahin Ö, Adsoy H, Akyel MS (2012) Sep Sci Technol 47:1542–1551

    Article  CAS  Google Scholar 

  8. Saka C, Şahin Ö, Kutluay S (2011) J Ind Eng Chem 19:1617–1623

    Google Scholar 

  9. Allen SJ, McKay G, Khader KYH (1989) J Chem Technol Biotechnol 45:291–302

    Article  CAS  Google Scholar 

  10. Wong YC, Szeto YS, Cheung WH, McKay G (2004) Process Biochem 39:695–704

    Article  Google Scholar 

  11. Yavuz Ö, Altunkaynak Y, Güzel F (2003) Water Res 37:948–952

    Article  CAS  Google Scholar 

  12. He M-C, Zhao J (2012) Clays Clay Miner 60:330–337

    Article  CAS  Google Scholar 

  13. Yavuz Ö, Saka C (2013) Appl Clay Sci 85:96–102

    Article  CAS  Google Scholar 

  14. Dogan M, Alkan M (2003) Chemosphere 50:517–528

    Article  CAS  Google Scholar 

  15. Özdemir Y, Doğan M, Alkan M (2006) Microporous Mesoporous Mater 96:419–427

    Article  Google Scholar 

  16. Doğan M, Özdemir Y, Alkan M (2007) Dyes Pigments 75:701–713

    Article  Google Scholar 

  17. Gemeay AH, El-Sherbiny AS, Zaki AB (2002) J Colloid Interface Sci 245:116–125

    Article  CAS  Google Scholar 

  18. Faghihian H, Moayed M, Firooz A, Iravani M (2013) Clays Clay Miner 61:193–203

    Article  CAS  Google Scholar 

  19. Qiu M, Qian C, Xu J, Wu J, Wang G (2009) Desalination 243:286–292

    Article  CAS  Google Scholar 

  20. Hong S, Wen C, He J, Gan F, Ho Y-S (2009) J Hazard Mater 167:630–633

    Article  CAS  Google Scholar 

  21. Jovic-Jovicic NP, Milutinovic-Nikolic AD, Zunic MJ, Mojovic ZD, Bankovic PT, Grzetic IA, Jovanovic DM (2013) J Contam Hydrol 150:1–11

    Article  CAS  Google Scholar 

  22. Rajakovic V, Aleksic G, Radetic M, Rajakovic L (2007) J Hazard Mater 143:494–499

    Article  CAS  Google Scholar 

  23. Bayrak Y (2006) Microporous Mesoporous Mater 87:203–206

    Article  CAS  Google Scholar 

  24. Sari A, Tuzen M, Citak D, Soylak M (2007) J Hazard Mater 149:283–291

    Article  CAS  Google Scholar 

  25. Bokobza L, Burr A, Garnaud G, Perrin MY, Pagnotta S (2004) Polym Int 53:1060–1065

    Article  CAS  Google Scholar 

  26. Burzo E (2009) Sepiolite and palygorskite group of silicates. In: Wijn HPJ (ed) Phyllosilicates. Springer, Berlin, pp 340–403

    Google Scholar 

  27. Dekany I, Turi L, Fonseca A, Nagy BJ (1999) Appl Clay Sci 14:141–160

    Article  CAS  Google Scholar 

  28. Gonzalez-Pradas E, Socias-Viciana M, Saifi M, Urena-Amate MD, Flores-Cespedes F, Fernandez-Perez M, Villafrenca-Sanchez M (2005) Water Res 39:1849–1857

    Article  CAS  Google Scholar 

  29. Franco F, Pozo M, Cecilia JA, Benitez-Guerrero M, Pozo E, Martín Rubi JA (2014) Appl Clay Sci 102:15–27

    Article  CAS  Google Scholar 

  30. Balci S (1999) Clay Miner 34:647–655

    Article  CAS  Google Scholar 

  31. Deruiter R, Pamin K, Kentgens APM, Jansen JC, Vanbekkum H (1993) Zeolites 13:611–621

    Article  CAS  Google Scholar 

  32. El Roz M, Lakiss L, Valtchev V, Mintova S, Thibault-Starzyk F (2012) Microporous Mesoporous Mater 158:148–154

    Article  Google Scholar 

  33. Weltmann KD, Brandenburg R, Woedtke TV, Ehlbeck J, Foest R, Stieber M, Kindel E (2008) J Phys D Appl Phys 41:194008

    Article  Google Scholar 

  34. Ehlbeck J, Schnabel U, Polak M, Winter J, Woetke TV, Brandenburg R, von dem Hagen T, Weltmann KD (2011) J Phys D Appl Phys 44:013002

    Article  Google Scholar 

  35. Desmet T, Morent R, De Geyter N, Leys C, Schacht E, Dubruel P (2009) Biomacromolecules 10:2351–2378

    Article  CAS  Google Scholar 

  36. Wen Y, Shen C, Ni Y, Tong S, Yu F (2012) J Hazard Mater 201–202:162–169

    Article  Google Scholar 

  37. Park SJ, Kim JS (2001) J Colloid Interface Sci 244:336–341

    Article  CAS  Google Scholar 

  38. Shen W, Li Z, Liu Y (2008) Recent Pat Chem Eng 1:27–40

    Article  CAS  Google Scholar 

  39. Du LG, Celini N, Poncin-Epaillard F, Bergaya F (2006) Surf Coat Technol 201:5815–5821

    Google Scholar 

  40. Celini N, Poncin-Epaillard F, Bergaya F (2007) Polymer 48:58–67

    Article  CAS  Google Scholar 

  41. Sparavigna A (2008) Cornell University Library, pp 1–16 [arXiv:0801.3727v1 (physics.pop-ph)]

  42. Ren CS, Wang K, Nie QY, Wang DZ, Guo SH (2008) Appl Surf Sci 255:3421–3425

    Article  CAS  Google Scholar 

  43. Özcan A, Öncü EM, Özcan AS (2006) Colloids Surf A 277:90–97

    Article  Google Scholar 

  44. Pai YH, Ke JH, Huang HF, Lee CM, Zen JM, Shieu FS (2006) J Power Sources 161:275–281

    Article  CAS  Google Scholar 

  45. Yu QS, Krentsel E, Yasuda HK (1998) J Polym Sci, Part A: Polym Chem 36:1583–1592

    Article  CAS  Google Scholar 

  46. Chan CM, Ko TM, Hiraoka H (1996) Surf Sci Rep 24:1

    Article  CAS  Google Scholar 

  47. Fatyeyeva K, Poncin-Epaillard F (2011) Plasma Chem Plasma Process 31:449–464

    Article  CAS  Google Scholar 

  48. Cheng SY, Yuen CWM, Kan CW, Cheuk KKL, Daoud WA, Lam PL, Tsoi WYI (2010) Vacuum 84:1466–1470

    Article  CAS  Google Scholar 

  49. Makamba H, Hsieh YY, Sung WC, Chen SH (2005) Anal Chem 77:3971

    Article  CAS  Google Scholar 

  50. Bhattacharya S, Datta A, Berg JM, Gangopadhyay S (2005) J Microelectromech Syst 14:590

    Article  CAS  Google Scholar 

  51. Penkov OV, Lee HJ, Plaksin VY, Mansur R, Kim JH (2010) Thin Solid Films 518:6160–6162

    Article  CAS  Google Scholar 

  52. Haji A, Shoushtari AM, Mirafshar M (2014) Color Technol 130(1):37–42

    Article  CAS  Google Scholar 

  53. Meister J (2000) Polymer modification: principles, technique, and application. Maarcel Dekker, New York

    Google Scholar 

  54. Sophonvachiraporn P, Rujiravanit R, Sreethawong T, Tokura S, Chavadej S (2011) Plasma Chem Plasma Process 31:233–249

    Article  CAS  Google Scholar 

  55. Langmuir I (1918) J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  56. Weber TW, Chakravorti PK (1974) Am Inst Chem Eng 20:228–235

    Article  CAS  Google Scholar 

  57. Freundlich HZ (1906) J Phys Chem A 57A:385–470

    Google Scholar 

  58. Tahir SS, Rauf N (2006) Chemosphere 63:1842–1848

    Article  CAS  Google Scholar 

  59. Crini G, Peindy HN, Gimbert F, Robert C (2007) Sep Purif Technol 53:97–110

    Article  CAS  Google Scholar 

  60. Hameed BH, El-Khaiary MI (2008) J Hazard Mater 30:574–579

    Article  Google Scholar 

  61. Hameed BH, El-Khaiary MI (2008) J Hazard Mater 153:701–708

    Article  CAS  Google Scholar 

  62. Bekçi Z, Özveri C, Seki Y, Yurdakoç K (2008) J Hazard Mater 154:254–261

    Article  Google Scholar 

  63. Han R, Wang Y, Sun Q, Wang L, Song J, He X, Dou C (2010) J Hazard Mater 175:1056–1061

    Article  CAS  Google Scholar 

  64. Chowdhury S, Mishra R, Saha P, Kushwaha P (2011) Desalination 265:159–168

    Article  CAS  Google Scholar 

  65. Lee Y-C, Kim EJ, Yang J-W, Shin H-J (2011) J Hazard Mater 192:62–70

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Research Foundation of Siirt University for financial support under Project 2013-SİÜSYO-SH1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cafer Saka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, M., Dilekoğlu, M.F., Şahin, Ö. et al. Plasma Treated Sepiolite: A New Adsorbent for Removal of Malachite Green from Contaminated Water. Plasma Chem Plasma Process 36, 1417–1430 (2016). https://doi.org/10.1007/s11090-016-9745-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9745-y

Keywords

Navigation