Skip to main content
Log in

Integral Operators on Lattices

  • Published:
Order Aims and scope Submit manuscript

Abstract

As an abstraction and generalization of the integral operator in analysis, integral operators (known as Rota-Baxter operators of weight zero) on associative algebras and Lie algebras have played an important role in mathematics and physics. This paper initiates the study of integral operators on lattices and the resulting Rota-Baxter lattices (of weight zero). We show that properties of lattices can be characterized in terms of their integral operators. We also display a large number of integral operators on any given lattice and classify the isomorphism classes of integral operators on some common classes of lattices. We further investigate structures on semirings derived from differential and integral operators on lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Aguiar, M.: Pre-poisson algebras. Lett. Math. Phys. 54, 263–277 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atkinson, F.V.: Some aspects of Baxter’s functional equation. J. Math Analysis Appl. 7, 1–30 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bai, C.: A unified algebraic approach to the classical Yang-Baxter equation. J. Phys A:, Math. Thero 40, 11073–11082 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bai, C., Bellier, O., Guo, L., Ni, X.: Spliting of operations Manin products and Rota-Baxter operators. IMRN 2013, 485–524 (2013)

    Article  MATH  Google Scholar 

  5. Balinsky, A.A., Novikov, S.: Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Soviet Math. Dokl. 32, 228–231 (1985)

    MATH  Google Scholar 

  6. Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity. Pacific J. Math. 10, 731–742 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burris, S., Sankappanavar, H.P: A Course in Universal Algebra. Springer-Verlag, Heidelberg (2012)

    MATH  Google Scholar 

  8. Cartier, P.: On the structure of free Baxter algebras. Adv Math. 9, 253–265 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cassidy, P. J., Guo, L., Keigher, W. F., Sit, W. Y. (eds.): Differential Algebra and Related Topics, Proceedings of the International Workshop on Differential Algebra and Related Topics. World Scientific, Singapore. (2002)

  10. Catarino, P.M., Higgins, P.M.: The monoid of orientation-preserving mappings on a chain. Semigroup Forum 8, 190–206 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem I: the Hopf algebra structure of graphs and the main theorem. Comm. Math. Phys. 210(1), 249–273 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferrari, L.: On derivations of lattices. Pure. Math. Appl. 12, 365–382 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Gan, A., Guo, L.: On differential lattices, submitted, arXiv:2106.08481 (2021)

  14. Gelfand, I., Dorfman, I.: Hamiltonian operators and algebraic structures related to them. Func. Anal. Appl. 13, 13–30 (1979)

    MATH  Google Scholar 

  15. Goncharov, M.: Rota-Baxter operators on cocommutative Hopf algebras. J. Algebra 582, 39–56 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grätzer, G.: Lattice theory: foundation, Springer Basel AG (2011)

  17. Guo, L.: What is … a Rota-Baxter algebra. Notice of Amer. Math. Soc. 56, 1436–1437 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Guo, L.: An introduction to Rota-Baxter algebra international press (US) and higher education press (china) (2012)

  19. Guo, L., Keigher, W.: Baxter algebras and shuffle products. Adv. Math. 150, 117–149 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, L., Keigher, W.: On differential Rota-Baxter algebras. J. Pure Appl. Algebra 212, 522–540 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, L., Lang, H., Sheng, Y.: Integration and geometrization of Rota-Baxter operators, Adv. Math.,https://doi.org/10.1016/j.aim.2021.107834, arXiv:2009.03492 (2020)

  22. Hoffman, M.E.: Quasi-shuffle products. J Algebraic Combin. 11, 49–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kolchin, E.: Differential Algebra and Algebraic Groups. Academic Press, New York (1973)

    MATH  Google Scholar 

  24. Lazarev, A., Sheng, Y., Tang, R.: Deformation and homotopy theory of ralative Rota-Baxter Lie algebras. Comm. Math. Phys. 383, 595–631 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Loday, J.-L.: Dialgebras, in “Dialgebras and related operads”. Lect. Notes Math. 1763, 7–66 (2001)

    Article  MATH  Google Scholar 

  26. Makhlouf, A., Yau, D.: Rota-Baxter Hom-Lie-admissible algebras. Comm. Algebra 42, 1231–1257 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ritt, J.F.: Differential Equations from the Algebraic Standpoint, Amer. Math. Soc Colloq. Publ. vol 14 Amer. Math. Soc., New York (1932)

  28. Rosenkranz, M., Regensburger, G.: Solving and factoring boundary problems for linear ordinary differential equations in differential algebras. J Symbolic Comput. 43, 515–544 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rota, G.: Baxter Operators, an Introduction. In: Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries, Joseph P. S. Kung, Editor, Birkhäuser, Boston (1995)

  30. Semenov-Tian-Shansky, M.A.: What is a classical R-matrix?. Funct. Anal. Appl. 17, 259–272 (1983)

    Article  MATH  Google Scholar 

  31. Singer, M., Van Der Put, M.: Galois Theory of Linear Differential Equations. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  32. Sloan, I.H., Joe, S.: Lattice methods for multiple integration, Clarendon Press (1994)

  33. Szasz, G.: Derivations of lattices. Acta Sci Math. (Szeged) 37, 149–154 (1975)

    MathSciNet  MATH  Google Scholar 

  34. Tang, R., Bai, C., Guo, L., Sheng, Y.: Deformations and their controlling cohomologies of O-operators. Comm Math Phys. 368, 665–700 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xin, X.L., Li, T.Y., Lu, J.H.: On derivations of lattices. Inf. Sci. 178, 307–316 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xin, X.L.: The fixed theory of a derivation in lattices. Fixed Point Theory Appl. 7, 12 (2012). https://doi.org/10.1186/1687-1812-2012-218

    MATH  Google Scholar 

  37. Yu, H., Guo, L., Thibon, J.Y.: Weak quasi-symmetric functions, Rota–Baxter algebras and Hopf algebras. Adv. Math. 344, 1–34 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the NSFC Grants (Nos. 11801239 and 12171022). We thank the anonymous referees for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Guo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, A., Guo, L. & Wang, S. Integral Operators on Lattices. Order 40, 63–86 (2023). https://doi.org/10.1007/s11083-021-09593-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-021-09593-0

Keywords

Navigation