Skip to main content
Log in

Spectral Order on a Synaptic Algebra

  • Published:
Order Aims and scope Submit manuscript

Abstract

We define and study an alternative partial order, called the spectral order, on a synaptic algebra—a generalization of the self-adjoint part of a von Neumann algebra. We prove that if the synaptic algebra A is norm complete (a Banach synaptic algebra), then under the spectral order, A is Dedekind σ-complete lattice, and the corresponding effect algebra E is a σ-complete lattice. Moreover, E can be organized into a Brouwer-Zadeh algebra in both the usual (synaptic) and spectral ordering; and if A is Banach, then E is a Brouwer-Zadeh lattice in the spectral ordering. If A is of finite type, then De Morgan laws hold on E in both the synaptic and spectral ordering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfsen, E.M.: Compact Convex Sets and Boundary Integrals. Springer, New York (1971)

    Book  MATH  Google Scholar 

  2. Beran, L.: Orthomodular Lattices. Algebraic Approach. Academia, Prague-D. Reidel, Dordrecht (1984)

    MATH  Google Scholar 

  3. Bohata, M., Hamhalter, J.: Star order on operator and function algebras and its nonlinear preservers. Lin. Multilin. Algebra 64, 2519–2532 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cattaneo, G., Hamhalter, J.: De Morgan property for effect algebras of von Neumann algebras. Lett. Math. Phys. 59, 234–252 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cirulis, J.: Extending the star order to Rickart rings. Lin. Mutltilin. Algebra 64, 1490–1508 (2016)

    MathSciNet  MATH  Google Scholar 

  6. de Groote, H.F.: On a canonical lattice structurs on the effect algebra of a von Neumann algebra arXiv:0410018v2 (2005)

  7. Drazin, M.P.: Natural structures on semigroups with involution. Bull. Amer. Math. Soc. 84, 139–141 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Foulis, D.J.: Synaptic algebras. Math. Slovaca 60(5), 631–654 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logic. Found. Phys. 24, 1331–1352 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Foulis, D.J., Pulmannová, S.: Spectral resolution in an order-unit space. Rep. Math. Phys. 62(3), 323–344 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Foulis, D.J., Pulmannová, S.: Generalized Hermitian algebras. Int. J. Theor. Phys. 48, 1320–1333 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Foulis, D.J., Pulmannová, S.: Spin factors as generalized Hermitian algebras. Found Phys. 39, 237–255 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Foulis, D.J., Pulmannová, S.: Projections in a synaptic algebra. Order 27, 235–257 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Foulis, D.J., Pulmannová, S.: Regular elements in generalized Hermitian algebras. Math. Slovaca 61, 155–172 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Foulis, D., Pulmannová, S.: Type-decomposition of a synaptic algebra. Found Phys. 43, 948–986 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Foulis, D.J., Pulmannová, S.: Symmetries in synaptic algebras. Math. Slovaca 64(3), 751–776 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Foulis, D.J., Jenčová, A., Pulmannová, S.: Two projections in a synaptic algebra. Linear Algebra Appl. 478, 163–287 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Foulis, D.J., Jenčová, A., Pulmannová, S.: A projection and an effect in a synaptic algebra. Linear Algebra Appl. 485, 417–441 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Foulis, D.J., Pulmannová, S.: Commutativity in a synaptic algebra. Math. Slovaca 66, 469–482 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Foulis, D.J., Pulmannová, S.: Vector Lattices in Synaptic Algebras. arXiv:1605.06987[math.RA] (2016)

  21. Foulis, D.J., Pulmannová, S.: Kadison’s Antilattice Theorem for a Syanptic Algebra. arXiv:1706.01719v1[math.RA] (2017)

  22. Foulis, D.J., Pulmannová, S.: Banach synaptic algebras. arXiv:1705.01011[math.RA] (2017)

  23. Foulis, D.J., Jenčová, A., Pulmannová, S.: A Loomis-Sikorski theorem and functional calculus for a generalized hermitian algebra. Rep. Math. Phys. 80, 255–275 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Giuntini, R., Ledda, A., Paoli, F.: A new view of effects in a Hilbert space. Stud. Logica. 104, 1145–1177 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gudder, S.: Sharply dominating effect algebras. Tatra Mt. Math. Publ. 15, 23–30 (1998)

    MathSciNet  MATH  Google Scholar 

  26. Gudder, S.: An order for quantum observables. Math. Slovaca 56, 573–589 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Gudder, S., Beltrametti, E., Bugajski, S., Pulmannová, S.: Convex and linear effect algebras. Rep. Math. Phys. 44, 359–379 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hamhalter, J.: Spectral order of operators and range projections. J. Math. Anal. Appl. 331, 1122–1134 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hamhalter, J., Turilova, E.: Spectral order on AW*-algebras and its preservers. Lobachevski J. Math. 37, 439–448 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hamhalter, J., Turilova, E.: Quantum spectral symmetries. Int. J. Theor. Phys. https://doi.org/10.1007/s10773-017-332-z

  31. Kadison, R.: Order properties of bounded self-adjoint operators. Proc. Amer. Math. Soc. 2, 505–510 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras, vol. I. Elementary theory, Acad. Press, New York (1983)

    MATH  Google Scholar 

  33. Kalmbach, G.: Orthomodular Lattices. Acad. Press, London (1983)

    MATH  Google Scholar 

  34. Kaplansky, I.: Any orthocomplemented modular lattice is a continuous geometry. Ann. Math. 61, 524–541 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  35. Li, Yuan, Xu, Xiao-Ming: The logic order on a generalized Hermitian algebra. Rep. Math. Phys. 69, 371–381 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. McCrimmon, K.: A Taste of Jordan Algebras, Ubiversitex. Springer, New York (2004)

    MATH  Google Scholar 

  37. Murphy, G.J.: C -Algebras and Operator Theory. Acad. Press Inc., Boston (1990)

    MATH  Google Scholar 

  38. Olson, M.: The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice. Proc. Amer. Math. Soc. 28, 537–544 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  39. Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Veda SAV, Bratislava-Kluwer, Dordrecht (1991)

    MATH  Google Scholar 

  40. Pulmannová, S.: A note on ideals in synaptic algebras. Math. Slovaca 62, 1091–1104 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pulmannová, S., Vinceková, E.: Remarks on the order for quantum observables. Math. Slovaca 57(6), 589–600 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sarymsakov, T.A., Ajupov, S., Hadjiev, D., Chilin, V.I.: ‘Uporiadočennyje algebry’ FAN. Taskent. (in Russian) (1983)

  43. Sherman, S.: Order in operator algebras. Amer. J. Math. 73, 227–232 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  44. Topping, D.M.: Jordan algebras of self-adjoint operators. Mem. Amer. Math. Soc. 53, 48 (1965)

    MathSciNet  MATH  Google Scholar 

  45. Weihua, L., Junde, W.: A representation theorem of infimum of bounded observables. J. Math. Phys. 49, 073521, 5 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Pulmannová.

Additional information

The second author was supported by the Research and Development Support Agency under the contract APVV-16-0073 and grant VEGA 2/0069/16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foulis, D.J., Pulmannová, S. Spectral Order on a Synaptic Algebra. Order 36, 1–17 (2019). https://doi.org/10.1007/s11083-018-9451-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-018-9451-x

Keywords

Navigation