Skip to main content

Advertisement

Log in

Reproduce the biophysical function of chemical synapse by using a memristive synapse

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dynamical modeling of nervous systems is of fundamental importance in many scientific fields containing the topics relative to computational neuroscience and biophysics. Many feasible mathematical models have been suggested in the explanation and prediction of some features of neural activities. Considering the special experimental findings and the computational efficiency, it is necessary to find a perfect balance between estimating biophysical functions with complete dynamics and reducing complexity when a tractable model is built. In this paper, a chemical synaptic model is reproduced by using a memristive synapse because it not only remains synaptic characteristic but also exhibits a pinched hysteresis loop and active feature locally. That is, a neuron activated by chemical synapse can produce similar firing modes as the neuron coupled by a memristive synapse, and both the chemical synapse and memristive synapse have similar field effect and biophysical properties. By calculating the one-parameter and two-parameter bifurcation as well as the Lyapunov exponent spectrum, it is confirmed that a neuron can be excited by the chemical synapse or the memristive synapse for generating chaotic firing patterns. Oscillation of the circuit composed of neuron and functional synapse is analyzed, suggesting that there exists a relation between the local activity and the edge of chaos via Hopf bifurcation. A modular circuit is designed to construct large-scale neural network. These results in this paper provide new evidences for application of memristive components and guide us to know the biophysical function of chemical synapse from physical viewpoint, in which the chemical synapse could be a kind of memristive synapse because of the same biophysical function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Rabinovich, M.I., Varona, P., Selverston, A.I., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Rev. Mod. Phys. 78, 1213–1268 (2006)

    Google Scholar 

  2. Chay, T.R.: Bursting excitable cell models by a slow Ca2+ current. J. Theor. Biol. 142, 305–315 (1990)

    Google Scholar 

  3. Wu, J., Xu, Y., Ma, J.: Lévy noise improves the electrical activity in a neuron under electromagnetic radiation. PLoS ONE 12, e0174330 (2017)

    Google Scholar 

  4. Xu, Y., Ying, H.P., Jia, Y., Ma, J., Hayat, T.: Autaptic regulation of electrical activities in neuron under electromagnetic induction. Sci. Rep. 7, 43452 (2017)

    Google Scholar 

  5. Wu, F., Ma, J., Zhang, G.: A new neuron model under electromagnetic field. Appl. Math. Comput. 347, 590–599 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Zhang, G., Wu, F.Q., Hayat, T., Ma, J.: Selection of spatial pattern on resonant network of coupled memristor and Josephson junction. Commun. Nonlinear Sci. Numer. Simul. 65, 79–90 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Wu, F., Zhou, P., Alsaedi, A., Hayat, T., Ma, J.: Synchronization dependence on initial setting of chaotic systems without equilibria. Chaos, Solitons Fractals 110, 124–132 (2018)

    MathSciNet  Google Scholar 

  8. Freeman, W.J.: Neurodynamics: An Exploration In Mesoscopic Brain Dynamics. Springer, New York (2000)

    MATH  Google Scholar 

  9. Baker, G.L., Blackburn, J.A., Smith, H.J.T.: Intermittent synchronization in a pair of coupled chaotic pendula. Phys. Rev. Lett. 81, 554–557 (1998)

    Google Scholar 

  10. Liu, Z., Wu, F., Alzahrani, F., Ma, J.: Control of multi-scroll attractors in a memristor-coupled resonator via time-delayed feedback. Mod. Phys. Lett. B. 32, 1850399 (2018)

    MathSciNet  Google Scholar 

  11. Wu, F., Zhang, Y., Zhang, X.: Regulating firing rates in a neural circuit by activating memristive synapse with magnetic coupling. Nonlinear Dyn. 98, 971–984 (2019)

    Google Scholar 

  12. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conductance and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  13. Hindmarsh, J.L., Rose, R.M.: A model for the nerve impulse propagation using two first-order differential equations. Nature 296, 162–164 (1982)

    Google Scholar 

  14. Morris, C., Lecar, H.: Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Google Scholar 

  15. Murza, A.C.: Oscillation patterns in tori of modified FHN neurons. Appl. Math. Model. 35, 1096–1106 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Pereda, A.E.: Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 15, 250–263 (2014)

    Google Scholar 

  17. Pouzat, C., Marty, A.: Autaptic inhibitory currents recorded from interneurones in rat cerebellar slices. J. Physiol. 509, 777–783 (1998)

    Google Scholar 

  18. Ma, J., Qin, H., Song, X., Chu, R.: Pattern selection in neuronal network driven by electric autapses with diversity in time delays. Int. J. Mod. Phys. B. 29, 1450239 (2014)

    Google Scholar 

  19. Qin, H., Ma, J., Jin, W., Wang, C.: Dynamics of electric activities in neuron and neurons of network induced by autapses. Sci. China Technol. Sci. 57, 936–946 (2014)

    Google Scholar 

  20. Song, X., Wang, C., Ma, J., Tang, J.: Transition of electric activity of neurons induced by chemical and electric autapses. Sci. China Technol. Sci. 58, 1007–1014 (2015)

    Google Scholar 

  21. Li, Y., Schmid, G., Hänggi, P., Schimansky-Geier, L.: Spontaneous spiking in an autaptic Hodgkin-Huxley setup. Phys. Rev. E. 82, 061907 (2010)

    MathSciNet  Google Scholar 

  22. Ma, J., Song, X., Tang, J., Wang, C.: Wave emitting and propagation induced by autapse in a forward feedback neuronal network. Neurocomputing 167, 378–389 (2015)

    Google Scholar 

  23. Bekkers, J.M.: Excitatory and inhibitory autaptic currents in isolated hippocampal neurons maintained in cell culture. Proc. Natl. Acad. Sci. 88, 7834–7838 (1991)

    Google Scholar 

  24. Bard Ermentrout, G., Terman, D.H.: Mathematical Foundations of Neuroscience. Springer, Cham (2010)

    MATH  Google Scholar 

  25. Bacci, A., Huguenard, J.R.: Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons. Neuron 49, 119–130 (2006)

    Google Scholar 

  26. Bacci, A., Huguenard, J.R., Prince, D.A.: Functional autaptic neurotransmission in fast-spiking interneurons: a novel form of feedback inhibition in the neocortex. J. Neurosci. 23, 859–866 (2003)

    Google Scholar 

  27. Perkel, D.H., Schulman, J.H., Bullock, T.H., Moore, G.P., Segundo, J.P.: Pacemaker neurons: effects of regularly spaced synaptic input. Science 145, 61–63 (1964)

    Google Scholar 

  28. Li, Y., Gu, H., Ding, X.: Bifurcations of enhanced neuronal bursting activities induced by the negative current mediated by inhibitory autapse. Nonlinear Dyn. 97, 2091–2105 (2019)

    Google Scholar 

  29. Guo, D., Wu, S., Chen, M., Perc, M., Zhang, Y., Ma, J., Cui, Y., Xu, P., Xia, Y., Yao, D.: Regulation of irregular neuronal firing by autaptic transmission. Sci. Rep. 6, 26096 (2016)

    Google Scholar 

  30. Herz, A.V.M., Gollisch, T., Machens, C.K., Jaeger, D.: Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science 314, 80–85 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Xu, Y., Ma, J.: Pattern formation in a thermosensitive neural network. Commun. Nonlinear Sci. Numer. Simul. 111, 106426 (2022)

    MathSciNet  MATH  Google Scholar 

  32. Xu, Y., Ma, J.: Control of firing activities in thermosensitive neuron by activating excitatory autapse. Chinese Phys. B. 30, 100501 (2021)

    Google Scholar 

  33. Zhu, Z., Ren, G., Zhang, X., Ma, J.: Effects of multiplicative-noise and coupling on synchronization in thermosensitive neural circuits. Chaos, Solitons Fractals 151, 111203 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Ramamoorthy, S., Deo, N.V., Grosh, K.: A mechano-electro-acoustical model for the cochlea: response to acoustic stimuli. J. Acoust. Soc. Am. 121, 2758–2773 (2007)

    Google Scholar 

  35. Lapicque, L.M.: Recherches quantitatives sur l’excitation electrique des nerfs. J. Physiol. Paris. 9, 620–635 (1907)

    Google Scholar 

  36. Wu, F., Zhang, G., Ma, J.: A neural memristor system with infinite or without equilibrium. Eur. Phys. J. Spec. Top. 228, 1527–1534 (2019)

    Google Scholar 

  37. Chua, L., Mannan, Z.I., Sah, M.P., Rajamani, V., Kim, H.: Third-order memristive Morris-Lecar model of barnacle muscle fiber. Int. J. Bifurc. Chaos. 27, 1730015 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Nowotny, T., Rabinovich, M.I.: Dynamical origin of independent spiking and bursting activity in neural microcircuits. Phys. Rev. Lett. 98, 128106 (2007)

    Google Scholar 

  39. Moujahid, A., D’Anjou, A., Torrealdea, F.J., Torrealdea, F.: Energy and information in Hodgkin-Huxley neurons. Phys. Rev. E. 83, 031912 (2011)

    MathSciNet  Google Scholar 

  40. Xie, Y., Chen, L.N., Kang, Y.M., Aihara, K.: Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model. Phys. Rev. E. 77, 061921 (2008)

    MathSciNet  Google Scholar 

  41. Li, Y., Wang, R., Zhang, T.: Nonlinear computational models of dynamical coding patterns in depression and normal rats: from electrophysiology to energy consumption. Nonlinear Dyn. 107, 3847–3862 (2022)

    Google Scholar 

  42. Wang, R., Zhang, Z., Chen, G.: Energy coding and energy functions for local activities of the brain. Neurocomput. 73, 139–150 (2009)

    Google Scholar 

  43. Wang, R., Wang, Z., Zhu, Z.: The essence of neuronal activity from the consistency of two different neuron models. Nonlinear Dyn. 92, 973–982 (2018)

    Google Scholar 

  44. Wang, R., Zhang, Z.: Energy coding in biological neural networks. Cogn. Neurodyn. 1, 203–212 (2007)

    Google Scholar 

  45. Izhikevich, E.M.: Neural excitability, spiking and bursting. Int. J. Bifurc. Chaos. 10, 1171–1266 (2000)

    MathSciNet  MATH  Google Scholar 

  46. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003)

    Google Scholar 

  47. Sharifipoor, O., Ahmadi, A.: An analog implementation of biologically plausible neurons using CCII building blocks. Neural Netw. 36, 129–135 (2012)

    Google Scholar 

  48. Lv, M., Wang, C.N., Ren, G.D., Ma, J., Song, X.L.: Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dyn. 85, 1479–1490 (2016)

    Google Scholar 

  49. Ma, J., Lv, M., Zhou, P., Xu, Y., Hayat, T.: Phase synchronization between two neurons induced by coupling of electromagnetic field. Appl. Math. Comput. 307, 321–328 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Guo, S., Xu, Y., Wang, C., Jin, W., Hobiny, A., Ma, J.: Collective response, synapse coupling and field coupling in neuronal network. Chaos, Solitons Fractals 105, 120–127 (2017)

    MathSciNet  Google Scholar 

  51. Wu, F., Ma, J., Zhang, G.: Energy estimation and coupling synchronization between biophysical neurons. Sci. China Technol. Sci. 63, 625–636 (2020)

    Google Scholar 

  52. Bao, B., Zhu, Y., Ma, J., Bao, H., Wu, H., Chen, M.: Memristive neuron model with an adapting synapse and its hardware experiments. Sci. China Technol. Sci. 64, 1107–1117 (2021)

    Google Scholar 

  53. Zhang, Y., Wu, F., Wang, C., Ma, J.: Stability of target waves in excitable media under electromagnetic induction and radiation. Physica. A Stat. Mech. its Appl. 521, 519–530 (2019)

    MathSciNet  MATH  Google Scholar 

  54. Wang, Y., Wang, C., Ren, G., Tang, J., Jin, W.: Energy dependence on modes of electric activities of neuron driven by multi-channel signals. Nonlinear Dyn. 89, 1967–1987 (2017)

    Google Scholar 

  55. Bao, H., Hu, A., Liu, W., Bao, B.: Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural Netw. Learn. Syst. 31, 502–511 (2020)

    Google Scholar 

  56. Li, K., Bao, H., Li, H., Ma, J., Hua, Z., Bao, B.: Memristive Rulkov neuron model with magnetic induction effects. IEEE Trans. Ind. Infor. 18, 1726–1736 (2022)

    Google Scholar 

  57. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)

    Google Scholar 

  58. Zhang, Y., Wang, X.P., Li, Y., Friedman, E.G.: Memristive model for synaptic circuits. IEEE Trans. Circ. Syst. II Express Briefs. 64, 767–771 (2017)

    Google Scholar 

  59. Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE. 64, 209–223 (1976)

    MathSciNet  Google Scholar 

  60. Chua, L., Sbitnev, V., Kim, H.: Hodgkin-Huxley axon is made of memristors. Int. J. Bifurc. Chaos. 22, 1230011 (2012)

    MATH  Google Scholar 

  61. Ma, J., Wang, Y., Wang, C., Xu, Y., Ren, G.: Mode selection in electrical activities of myocardial cell exposed to electromagnetic radiation. Chaos, Solitons Fractals 99, 219–225 (2017)

    Google Scholar 

  62. FitzHugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 445–466 (1961)

    Google Scholar 

  63. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. IRE. 50, 2061–2070 (1962)

    Google Scholar 

  64. Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students. SIAM Philadelphia, Philadelphia (2002)

    MATH  Google Scholar 

  65. Zhang, X.F., Ma, J.: Wave filtering and firing modes in a light-sensitive neural circuit. J. Zhejiang Univ. Sci. A 22(9), 707–720 (2021)

    Google Scholar 

  66. Guo, Y., Zhou, P., Yao, Z., Ma, J.: Biophysical mechanism of signal encoding in an auditory neuron. Nonlinear Dyn. 105, 3603–3614 (2021)

    Google Scholar 

  67. Korneev, I.A., Semenov, V.V., Slepnev, A.V., Vadivasova, T.E.: The impact of memristive coupling initial states on travelling waves in an ensemble of the FitzHugh-Nagumo oscillators. Chaos, Solitons Fractals 147, 110923 (2021)

    MathSciNet  MATH  Google Scholar 

  68. Zhou, P., Zhang, X., Ma, J.: How to wake up the electric synapse coupling between neurons? Nonlinear Dyn. 108, 1681–1695 (2022)

    Google Scholar 

  69. Ma, X.W., Xu, Y.: Taming the hybrid synapse under energy balance between neurons. Chaos, Solitons Fractals 159, 112149 (2022)

    MathSciNet  Google Scholar 

  70. Xie, Y., Yao, Z., Ma, J.: Phase synchronization and energy balance between neurons. Front. Inform. Technol. Electron. Eng. (2022). https://doi.org/10.1631/FITEE.2100563

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editor and anonymous reviewers for their valuable comments and suggestions that helped to improve the paper. This work is supported by National Natural Science Foundation of China under Grant No. 12062009.

Funding

This work was supported by National Natural Science Foundation of China, GrantNumber 12062009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ma.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Guo, Y. & Ma, J. Reproduce the biophysical function of chemical synapse by using a memristive synapse. Nonlinear Dyn 109, 2063–2084 (2022). https://doi.org/10.1007/s11071-022-07533-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07533-0

Keywords

Navigation