Skip to main content

Advertisement

Log in

A new locally active memristive synapse-coupled neuron model

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a new type of non-volatile locally active memristor with bi-stability is proposed by injecting appropriate voltage pulses to realize a switching mechanism between two stable states. It is found that the memristive parameters of the new memristor can affect the local activity, which has been rarely reported, and this phenomenon is explained based on mathematical analyses and numerical simulations. Then, a locally active memristive coupled neuron model is constructed using the proposed memristor as a connecting synapse. The parameter-associated dynamical behaviors are revealed by bifurcation plots, phase plane portraits and dynamical evolution maps. Moreover, the bi-stability phenomenon of the new coupled neuron model is disclosed by local attraction basins, and the periodic burster and multi-scroll chaotic burster are found if a multi-level pulse current is used to imitate a periodical external stimulus on the neurons. The Hamiltonian energy function is calculated and analyzed with or without external excitation. Finally, the neuronal circuit is designed and implemented, which can mimic electrical activity of the neurons and is useful for physical applications. The experimental results captured from the analog circuit are consistent well with the numerical simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data availability statement

Data will be made available on reasonable request.

References

  1. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971). https://doi.org/10.1109/TCT.1971.1083337

    Article  Google Scholar 

  2. Corinto, F., Forti, M.: Memristor circuits: bifurcations without parameters. IEEE Trans. Circuits Syst. I 64(6), 1540–1551 (2017). https://doi.org/10.1109/tcsi.2016.2642112

    Article  Google Scholar 

  3. Corinto, F., Forti, M.: Memristor circuits: flux-charge analysis method. IEEE Trans. Circuits Syst. I 63(11), 1997–2009 (2016). https://doi.org/10.1109/tcsi.2016.2590948

    Article  Google Scholar 

  4. Minati, L., Gambuzza, L.V., Thio, W.J., Sprott, J.C., Frasca, M.: A chaotic circuit based on a physical memristor. Chaos Solitons Fractals 138, 109990 (2020). https://doi.org/10.1016/j.chaos.2020.109990

    Article  MathSciNet  Google Scholar 

  5. Chen, M., Sun, M., Bao, H., Hu, Y., Bao, B.: Flux-charge analysis of two-memristor-based chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Ind. Electron. 67(3), 2197–2206 (2020). https://doi.org/10.1109/tie.2019.2907444

    Article  Google Scholar 

  6. Chen, M., Ren, X., Wu, H., Xu, Q., Bao, B.: Interpreting initial offset boosting via reconstitution in integral domain. Chaos Solitons Fractals 131, 109554 (2020). https://doi.org/10.1016/j.chaos.2019.109544

    Article  MathSciNet  Google Scholar 

  7. Chua, L.: Local activity is the origin of complexity. Int. J. Bifurcation Chaos 15(11), 3435–3456 (2005). https://doi.org/10.1142/S0218127405014337

    Article  MathSciNet  MATH  Google Scholar 

  8. Chua, L.: If it’s pinched it’s a memristor. Semicond. Sci. Technol. 29(10), 104001 (2014). https://doi.org/10.1088/0268-1242/29/10/104001

    Article  Google Scholar 

  9. Yu, Y., Bao, H., Shi, M., Bao, B., Chen, Y., Chen, M.: Complex dynamical behaviors of a fractional-order system based on a locally active memristor. Complexity 2019, 1–13 (2019). https://doi.org/10.1155/2019/2051053

    Article  MATH  Google Scholar 

  10. Lin, H., Wang, C., Hong, Q., Sun, Y.: A multi-stable memristor and its application in a neural network. IEEE Trans. Circuits Syst. II 67(12), 3472–3476 (2020). https://doi.org/10.1109/tcsii.2020.3000492

    Article  Google Scholar 

  11. Liang, Y., Wang, G., Chen, G., Dong, Y., Yu, D., Iu, H.H.-C.: S-type locally active memristor-based periodic and chaotic oscillators. IEEE Trans. Circuits Syst. I 67(12), 1–14 (2020). https://doi.org/10.1109/tcsi.2020.3017286

    Article  MathSciNet  Google Scholar 

  12. Dong, Y., Wang, G., Chen, G., Shen, Y., Ying, J.: A bistable nonvolatile locally-active memristor and its complex dynamics. Commun. Nonlinear Sci. Numer. Simulat. 84, 105203 (2020). https://doi.org/10.1016/j.cnsns.2020.105203

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhu, M., Wang, C., Deng, Q., Hong, Q.: Locally active memristor with three coexisting pinched hysteresis loops and its emulator circuit. Int. J. Bifurcation Chaos 30(13), 2050184 (2020). https://doi.org/10.1142/s0218127420501849

    Article  MathSciNet  MATH  Google Scholar 

  14. Liang, Y., Lu, Z., Wang, G., Dong, Y., Yu, D., Iu, H.H.-C.: Modeling simplification and dynamic behavior of n-shaped locally-active memristor based oscillator. IEEE Access 8, 75571–75585 (2020). https://doi.org/10.1109/access.2020.2988029

    Article  Google Scholar 

  15. Ying, J., Wang, G., Dong, Y., Yu, S.: Switching characteristics of a locally-active memristor with binary memories. Int. J. Bifurcation Chaos 29(11), 1930030 (2019). https://doi.org/10.1142/s0218127419300301

    Article  MathSciNet  MATH  Google Scholar 

  16. Bao, H., Hu, A., Liu, W., Bao, B.: Hidden bursting firings and bifurcation mechanisms in memristive neuron model with threshold electromagnetic induction. IEEE Trans. Neural Netw. Learn Syst. 31(2), 502–511 (2020). https://doi.org/10.1109/TNNLS.2019.2905137

    Article  Google Scholar 

  17. Bao, H., Zhu, D., Liu, W., Xu, Q., Chen, M., Bao, B.: Memristor synapse-based morris-lecar model: bifurcation analyses and fpga-based validations for periodic and chaotic bursting/spiking firings. Int. J. Bifurcation Chaos 30(03), 2050045 (2020). https://doi.org/10.1142/s0218127420500455

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, C., Bao, H., Chen, M., Xu, Q., Bao, B.: Non-ideal memristor synapse-coupled bi-neuron Hopfield neural network: Numerical simulations and breadboard experiments. AEU Int. J. Electron. Commun. 111, 152894 (2019). https://doi.org/10.1016/j.aeue.2019.152894

    Article  Google Scholar 

  19. Lin, H., Wang, C.: Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network. Appl. Math. Comput. 369, 124840 (2020). https://doi.org/10.1016/j.amc.2019.124840

    Article  MathSciNet  MATH  Google Scholar 

  20. Bao, B., Qian, H., Wang, J., Xu, Q., Chen, M., Wu, H., Yu, Y.: Numerical analyses and experimental validations of coexisting multiple attractors in Hopfield neural network. Nonlinear Dyn. 90(4), 2359–2369 (2017). https://doi.org/10.1007/s11071-017-3808-3

    Article  MathSciNet  Google Scholar 

  21. Lin, H., Wang, C., Tan, Y.: Hidden extreme multistability with hyperchaos and transient chaos in a Hopfield neural network affected by electromagnetic radiation. Nonlinear Dyn. 99(3), 2369–2386 (2019). https://doi.org/10.1007/s11071-019-05408-5

    Article  Google Scholar 

  22. Zhang, G., Wang, C., Alzahrani, F., Wu, F., An, X.: Investigation of dynamical behaviors of neurons driven by memristive synapse. Chaos Solitons Fractals 108, 15–24 (2018). https://doi.org/10.1016/j.chaos.2018.01.017

    Article  MathSciNet  Google Scholar 

  23. Tan, Y., Wang, C.: A simple locally active memristor and its application in HR neurons. Chaos 30(5), 053118 (2020). https://doi.org/10.1063/1.5143071

    Article  MathSciNet  MATH  Google Scholar 

  24. Lin, H., Wang, C., Sun, Y., Yao, W.: Firing multistability in a locally active memristive neuron model. Nonlinear Dyn. 100(4), 3667–3683 (2020). https://doi.org/10.1007/s11071-020-05687-3

    Article  Google Scholar 

  25. Njitacke, Z.T., Doubla, I.S., Mabekou, S., Kengne, J.: Hidden electrical activity of two neurons connected with an asymmetric electric coupling subject to electromagnetic induction: Coexistence of patterns and its analog implementation. Chaos Solitons Fractals 137, 109785 (2020). https://doi.org/10.1016/j.chaos.2020.109785

    Article  MathSciNet  Google Scholar 

  26. Xu, Q., Zhu, D.: FPGA-based Experimental Validations of Electrical Activities in Two Adjacent FitzHugh-Nagumo Neurons Coupled by Memristive Electromagnetic Induction. IETE Technical Review 1–15 (2020). https://doi.org/10.1080/02564602.2020.1800526

  27. Chen, C., Chen, J., Bao, H., Chen, M., Bao, B.: Coexisting multi-stable patterns in memristor synapse-coupled Hopfield neural network with two neurons. Nonlinear Dyn. 95(4), 3385–3399 (2019). https://doi.org/10.1007/s11071-019-04762-8

    Article  MATH  Google Scholar 

  28. Zhang, G., Ma, J., Alsaedi, A., Ahmad, B., Alzahrani, F.: Dynamical behavior and application in Josephson Junction coupled by memristor. Appl. Math. Comput. 321, 290–299 (2018). https://doi.org/10.1016/j.amc.2017.10.054

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu, F., Ma, J., Zhang, G.: Energy estimation and coupling synchronization between biophysical neurons. Sci. China Technol. Sci. 63(4), 625–636 (2019). https://doi.org/10.1007/s11431-019-9670-1

    Article  Google Scholar 

  30. Xu, Y., Jia, Y., Ma, J., Alsaedi, A., Ahmad, B.: Synchronization between neurons coupled by memristor. Chaos Solitons Fractals 104, 435–442 (2017). https://doi.org/10.1016/j.chaos.2017.09.002

    Article  Google Scholar 

  31. Bao, H., Zhang, Y., Liu, W., Bao, B.: Memristor synapse-coupled memristive neuron network: synchronization transition and occurrence of chimera. Nonlinear Dyn. 100(1), 937–950 (2020). https://doi.org/10.1007/s11071-020-05529-2

    Article  MATH  Google Scholar 

  32. Parker, J.E., Short, K.M.: Sigmoidal synaptic learning produces mutual stabilization in chaotic FitzHugh-Nagumo model. Chaos 30(6), 063108 (2020). https://doi.org/10.1063/5.0002328

    Article  MathSciNet  Google Scholar 

  33. Wang, S., He, S., Rajagopal, K., Karthikeyan, A., Sun, K.: Route to hyperchaos and chimera states in a network of modified Hindmarsh-Rose neuron model with electromagnetic flux and external excitation. Europ. Phys. J. Special Topics 229(6–7), 929–942 (2020). https://doi.org/10.1140/epjst/e2020-900247-7

    Article  Google Scholar 

  34. Bao, B., Hu, A., Xu, Q., Bao, H., Wu, H., Chen, M.: AC-induced coexisting asymmetric bursters in the improved Hindmarsh-Rose model. Nonlinear Dyn. 92(4), 1695–1706 (2018). https://doi.org/10.1007/s11071-018-4155-8

    Article  Google Scholar 

  35. Bao, H., Hu, A., Liu, W.: Bipolar pulse-induced coexisting firing patterns in two-dimensional hindmarsh-rose neuron model. Int. J. Bifurcation Chaos 29(01), 1950006 (2019). https://doi.org/10.1142/s0218127419500068

    Article  MathSciNet  MATH  Google Scholar 

  36. QuanXu, Z.S., Bao, H., Chen, M., Bao, B.: Two-neuron-based non-autonomous memristive Hopfield neural network: numerical analyses and hardware experiments. AEU Int. J. Electron. Commun. 96, 66–74 (2018). https://doi.org/10.1016/j.aeue.2018.09.017

    Article  Google Scholar 

  37. Lin, H., Wang, C., Yao, W., Tan, Y.: Chaotic dynamics in a neural network with different types of external stimuli. Commun. Nonlinear Sci. Numer. Simulat. 90, 105390 (2020). https://doi.org/10.1016/j.cnsns.2020.105390

    Article  MathSciNet  MATH  Google Scholar 

  38. Yang, Y., Ma, J., Xu, Y., Jia, Y.: Energy dependence on discharge mode of Izhikevich neuron driven by external stimulus under electromagnetic induction. Cognit. Neurodyn. (2020). https://doi.org/10.1007/s11571-020-09596-4

    Article  Google Scholar 

  39. Wang, Y., Wang, C., Ren, G., Tang, J., Jin, W.: Energy dependence on modes of electric activities of neuron driven by multi-channel signals. Nonlinear Dyn. 89(3), 1967–1987 (2017). https://doi.org/10.1007/s11071-017-3564-4

    Article  Google Scholar 

  40. Chua, L.: Everything you wish to know about memristors but are afraid to ask. Radioengineering 24(2), 319–368 (2015). https://doi.org/10.13164/re.2015.0319

    Article  Google Scholar 

  41. Mannan, Z.I., Adhikari, S.P., Kim, H., Chua, L.: Global dynamics of Chua Corsage Memristor circuit family: fixed-point loci, Hopf bifurcation, and coexisting dynamic attractors. Nonlinear Dyn. 99(4), 3169–3196 (2020). https://doi.org/10.1007/s11071-020-05476-y

    Article  Google Scholar 

  42. Hong, Q., Xie, Q., Xiao, P.: A novel approach for generating multi-direction multi-double-scroll attractors. Nonlinear Dyn. 87(2), 1015–1030 (2016). https://doi.org/10.1007/s11071-016-3094-5

    Article  Google Scholar 

  43. Qi, G., Hu, J.: Modelling of both energy and volume conservative chaotic systems and their mechanism analyses. Commun. Nonlinear Sci. Numer. Simul. 84, 105171 (2020). https://doi.org/10.1016/j.cnsns.2020.105171

  44. Cang, S., Wu, A., Wang, Z., Chen, Z.: Four-dimensional autonomous dynamical systems with conservative flows: two-case study. Nonlinear Dyn. 89(4), 2495–2508 (2017). https://doi.org/10.1007/s11071-017-3599-6

  45. Ma, J., Wu, F., Jin, W., Zhou, P., Hayat, T.: Calculation of Hamilton energy and control of dynamical systems with different types of attractors. Chaos 27(5), 053108 (2017). https://doi.org/10.1063/1.4983469

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Natural Science Foundation of Tianjin (No. 18JCYBJC87700), the New Generation Artificial Intelligence Technology Major Project of Tianjin (18ZXZNSY00270) and South African National Research Foundation Grants (Nos. 114911 and 132797).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzeng Dong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Wang, Z. & Dong, E. A new locally active memristive synapse-coupled neuron model. Nonlinear Dyn 104, 4459–4475 (2021). https://doi.org/10.1007/s11071-021-06574-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06574-1

Keywords

Navigation