Skip to main content
Log in

Synchronization and chimeras in a network of photosensitive FitzHugh–Nagumo neurons

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recently, a photosensitive model has been proposed that takes into account nonlinear encoding and responses of photosensitive neurons that are subject to optical signals. In the model, a photocell term has been added to the well-known FitzHugh–Nagumo neuron, which results in a time-varying voltage source. The modified model exhibits most of the main characteristics of biological neurons, like spiking, bursting, and chaotic responses, but is also amenable to study the effect of optical signals. In this paper, we consider a small-world network of photosensitive neurons and study their collective behavior in dependence on interaction strength. We show that the network exhibits synchronization in a specific range of coupling strengths before transcending into a chimera state. We use the master stability function, a local-order parameter, as well as recurrence plots to verify the reported results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hall, J.E., Hall, M.E.: Guyton and Hall Textbook of Medical Physiology E-Book. Elsevier Health Sciences (2020)

  2. Ma, J., Yang, Z.Q., Yang, L.J., Tang, J.: A physical view of computational neurodynamics. J. Zhejiang Univ. Sci. A 20(9), 639 (2019)

    Article  Google Scholar 

  3. Ma, J., Tang, J.: A review for dynamics in neuron and neuronal network. Nonlinear Dyn. 89(3), 1569 (2017)

    Article  MathSciNet  Google Scholar 

  4. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500 (1952)

    Article  Google Scholar 

  5. Hindmarsh, J.L., Rose, R.: A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B 221(1222), 87 (1984)

    Article  Google Scholar 

  6. FitzHugh, R.: Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17(4), 257 (1955)

    Article  Google Scholar 

  7. Uzuntarla, M., Ozer, M., Ileri, U., Calim, A., Torres, J.J.: Effects of dynamic synapses on noise-delayed response latency of a single neuron. Phys. Rev. E 92(06), 062710 (2015)

    Article  Google Scholar 

  8. Valenti, D., Augello, G., Spagnolo, B.: Dynamics of a FitzHugh–Nagumo system subjected to autocorrelated noise. Eur. Phys. J. B 65(3), 443 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hou, Z., Ma, J., Zhan, X., Yang, L., Jia, Y.: Estimate the electrical activity in a neuron under depolarization field. Chaos Solitons Fractals 142, 110522 (2020)

    Article  MathSciNet  Google Scholar 

  10. Yan, B., Panahi, S., He, S., Jafari, S.: Further dynamical analysis of modified Fitzhugh–Nagumo model under the electric field. Nonlinear Dyn. 101(1), 521 (2020)

    Article  Google Scholar 

  11. Xu, Y., Jia, Y., Ma, J., Hayat, T., Alsaedi, A.: Collective responses in electrical activities of neurons under field coupling. Sci. Rep. 8(1), 1349 (2018)

    Article  Google Scholar 

  12. Feng, P., Wu, Y., Zhang, J.: A route to chaotic behavior of single neuron exposed to external electromagnetic radiation. Front. Comput. Neurosci. 11, 94 (2017)

    Article  Google Scholar 

  13. Uzuntarla, M., Ozer, M., Guo, D.: Controlling the first-spike latency response of a single neuron via unreliable synaptic transmission. Eur. Phys. J. B 85(8), 1 (2012)

    Article  Google Scholar 

  14. Liu, Y., Xu, W.J., Ma, J., Alzahrani, F., Hobiny, A.: A new photosensitive neuron model and its dynamics. Front. Inf. Technol. Electron. Eng 21, 1387 (2020)

    Article  Google Scholar 

  15. Calim, A., Torres, J.J., Ozer, M., Uzuntarla, M.: Chimera states in hybrid coupled neuron populations. Neural Netw. 126, 108 (2020)

    Article  Google Scholar 

  16. Reinhart, R.M., Nguyen, J.A.: Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 22(5), 820 (2019)

    Article  Google Scholar 

  17. Babiloni, C., Lizio, R., Marzano, N., Capotosto, P., Soricelli, A., Triggiani, A.I., Cordone, S., Gesualdo, L., Del Percio, C.: Brain neural synchronization and functional coupling in Alzheimer’s disease as revealed by resting state EEG rhythms. Int. J. Psychophysiol. 103, 88 (2016)

    Article  Google Scholar 

  18. Calim, A., Hövel, P., Ozer, M., Uzuntarla, M.: Chimera states in networks of type-I Morris–Lecar neurons. Phys. Rev. E 98, 062217 (2018)

    Article  MathSciNet  Google Scholar 

  19. Xu, Y., Jia, Y., Ma, J., Alsaedi, A., Ahmad, B.: Synchronization between neurons coupled by memristor. Chaos Solitons Fractals 104, 435 (2017)

    Article  Google Scholar 

  20. Nazarimehr, F., Panahi, S., Jalili, M., Perc, M., Jafari, S., Ferčec, B.: Multivariable coupling and synchronization in complex networks. Appl. Math. Comput. 372, 124996 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Rakshit, S., Bera, B.K., Bollt, E.M., Ghosh, D.: Intralayer synchronization in evolving multiplex hypernetworks: analytical approach. SIAM J. Appl. Dyn. Syst. 19(2), 918 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109 (1998)

    Article  Google Scholar 

  23. Belykh, V.N., Belykh, I.V., Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems. Physica D 195(1), 159 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Omel’chenko, E., Sebek, M., Kiss, I.Z.: Universal relations of local order parameters for partially synchronized oscillators. Phys. Rev. E 97(6), 062207 (2018)

    Article  Google Scholar 

  25. Sun, X., Lei, J., Perc, M., Kurths, J., Chen, G.: Burst synchronization transitions in a neuronal network of subnetworks. Chaos 21(1), 016110 (2011)

    Article  Google Scholar 

  26. Plotnikov, S., Lehnert, J., Fradkov, A., Schöll, E.: Synchronization in heterogeneous FitzHugh–Nagumo networks with hierarchical architecture. Phys. Rev. E 94(1), 012203 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Masoliver, M., Malik, N., Schöll, E., Zakharova, A.: Coherence resonance in a network of FitzHugh–Nagumo systems: interplay of noise, time-delay, and topology. Chaos 27(10), 101102 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, Y., Xie, Y.: Dynamical characteristics of the fractional-order FitzHugh–Nagumo model neuron and its synchronization. Acta Phys. Sin. 59(3), 2147 (2010)

    Article  Google Scholar 

  29. Ma, J., Wu, F., Hayat, T., Zhou, P., Tang, J.: Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media. Physica A 486, 508 (2017)

    Article  MathSciNet  Google Scholar 

  30. Majhi, S., Bera, B.K., Ghosh, D., Perc, M.: Chimeras at the interface of physics and life sciences: reply to comments on Chimera states in neuronal networks: a review. Phys. Life Rev. 28, 142 (2019)

    Article  Google Scholar 

  31. Awal, N.M., Bullara, D., Epstein, I.R.: The smallest chimera: periodicity and chaos in a pair of coupled chemical oscillators. Chaos 29(1), 013131 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wojewoda, J., Czolczynski, K., Maistrenko, Y., Kapitaniak, T.: The smallest chimera state for coupled pendula. Sci. Rep. 6(1), 34329 (2016)

    Article  Google Scholar 

  33. Böhm, F., Zakharova, A., Schöll, E., Lüdge, K.: Amplitude-phase coupling drives chimera states in globally coupled laser networks. Phys. Rev. E 91(4), 040901 (2015)

    Article  MathSciNet  Google Scholar 

  34. Kundu, S., Majhi, S., Ghosh, D.: From asynchronous to synchronous chimeras in ecological multiplex network. Eur. Phys. J. Spec. Top. 228(11), 2429 (2019)

    Article  Google Scholar 

  35. Parastesh, F., Jafari, S., Azarnoush, H., Shahriari, Z., Wang, Z., Boccaletti, S., Perc, M.: Chimeras. Phys. Rep. (2020)

  36. Santos, M., Szezech, J., Borges, F., Iarosz, K., Caldas, I., Batista, A., Viana, R., Kurths, J.: Chimera-like states in a neuronal network model of the cat brain. Chaos Solitons Fractals 101, 86 (2017)

    Article  Google Scholar 

  37. Bera, B.K., Rakshit, S., Ghosh, D., Kurths, J.: Spike chimera states and firing regularities in neuronal hypernetworks. Chaos 29(5), 053115 (2019)

    Article  MathSciNet  Google Scholar 

  38. Bera, B.K., Ghosh, D., Banerjee, T.: Imperfect traveling chimera states induced by local synaptic gradient coupling. Phys. Rev. E 94(1), 012215 (2016)

    Article  Google Scholar 

  39. Majhi, S., Ghosh, D.: Alternating chimeras in networks of ephaptically coupled bursting neurons. Chaos 28(8), 083113 (2018)

    Article  MathSciNet  Google Scholar 

  40. Khaleghi, L., Panahi, S., Chowdhury, S.N., Bogomolov, S., Ghosh, D., Jafari, S.: Chimera states in a ring of map-based neurons. Physica A 536, 122596 (2019)

    Article  MathSciNet  Google Scholar 

  41. Bera, B.K., Ghosh, D.: Chimera states in purely local delay-coupled oscillators. Phys. Rev. E 93(5), 052223 (2016)

    Article  MathSciNet  Google Scholar 

  42. He, S.: Complexity and chimera states in a ring-coupled fractional-order memristor neural network. Front. Appl. Math. Stat. 6, 24 (2020)

    Article  Google Scholar 

  43. Majhi, S., Perc, M., Ghosh, D.: Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos 27(7), 073109 (2017)

    Article  MathSciNet  Google Scholar 

  44. Frolov, N., Maksimenko, V., Majhi, S., Rakshit, S., Ghosh, D., Hramov, A.: Chimera-like behavior in a heterogeneous Kuramoto model: the interplay between attractive and repulsive coupling. Chaos 30(8), 081102 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Matjaž Perc was supported by the Slovenian Research Agency (Grant Nos. P1-0403 and J1-2457). S. Jafari is also partially funded by Center for Nonlinear Systems, Chennai Institute of Technology, India vide funding number CIT/CNS/2020/RD/065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqtadar Hussain.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, I., Jafari, S., Ghosh, D. et al. Synchronization and chimeras in a network of photosensitive FitzHugh–Nagumo neurons. Nonlinear Dyn 104, 2711–2721 (2021). https://doi.org/10.1007/s11071-021-06427-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06427-x

Keywords

Navigation