Skip to main content
Log in

Modal characteristics of a rotating flexible beam with a concentrated mass based on the absolute nodal coordinate formulation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

A new dynamic model of a rotating flexible beam with a concentrated mass located in arbitrary position is derived based on the absolute nodal coordinate formulation, and its modal characteristics are investigated in this paper. To consider the concentrated mass at an arbitrary location of the beam, a Dirac’s delta function is used to express the mass per unit length of the beam. Based on the proposed dynamic model, the frequency analysis is performed. The nonlinear equation is transformed into the linear one via employing the linear perturbation analysis method. The stiffness matrix of static equilibrium of the system under the deformed condition is obtained, in which the effect of coupling between the longitudinal deformation and transversal deformation is included. This means even if only the chordwise bending equation is solved, the longitudinal vibration effect can be still considered. As we know, once the longitudinal deformation is large, it will significantly affect the chordwise bending vibration. So the proposed model in this paper is more accurate than the traditional dynamic models which are usually lack of the coupling terms between the longitudinal deformation and transversal deformation. In fact, the traditional dynamic models for the chordwise vibration analysis in the existing literature are usually linear due to neglecting the coupling terms, and consequently, they are only suitable for the modal characteristic analysis of a beam under small deformations. In order to get some general conclusions of the natural frequencies and mode shapes, the equation which governs the chordwise bending vibration of the rotating beam is transformed into a dimensionless form. The dynamic model presented in this paper is nonlinear and can be conveniently used to analyze the modal characteristics of a rotating flexible beam with large deformations. To demonstrate the power of the new dynamic model presented in this paper, the dynamic simulations involving the comparisons between the different frequencies obtained using the model proposed in this paper and the models in the existing literature and the investigating in frequency veering and mode shift phenomena are given. The simulation results show that the angular velocity of the flexible beam will give rise to the phenomena of the natural frequency loci veering and the associated mode shift which is verified in the previous studies. In addition, the phenomena of the natural frequency loci veering rather than crossing can be observed due to the changing of the magnitude of the concentrated mass or of the location of the concentrated mass which are found for the first time. Furthermore, there is an interesting phenomenon that the natural frequency loci will veer more than once due to different types of mode coupling between the bending and stretching vibrations of the rotating beam. At the same time, the mode shift phenomenon will occur correspondingly. Additionally, the characteristics of the vibration nodes are also investigated in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Kane, T.R., Ryan, R.R., Banerjee, A.K.: Dynamics of a cantilever beam attached to a moving base. J. Guid. Control Dyn. 10, 139–151 (1987)

    Article  Google Scholar 

  2. Zhang, D.J., Huston, R.L.: On dynamic stiffening of flexible bodies having high angular velocity. Mech. Struct. Mach. 24, 313–329 (1996)

    Article  Google Scholar 

  3. Yoo, H.H., Shin, S.H.: Vibration analysis of rotating cantilever beams. J. Sound Vib. 212, 807–828 (1998)

    Article  Google Scholar 

  4. Liu, J.Y., Hong, J.Z.: Dynamic modeling and modal truncation approach for a high-speed rotating elastic beam. Arch. Appl. Mech. 72, 554–563 (2002)

    Article  MATH  Google Scholar 

  5. Yang, H., Hong, J.Z., Yu, Z.Y.: Dynamics modeling of a flexible hub-beam system with a tip mass. J. Sound Vib. 266, 759–774 (2003)

    Article  Google Scholar 

  6. Cai, G.P., Hong, J.Z., Yang, S.X.: Dynamics analysis of a flexible hub-beam system with tip mass. Mech. Res. Commun. 32, 173–190 (2005)

    Article  MATH  Google Scholar 

  7. Liu, J.Y., Hong, J.Z.: Geometric stiffening effect on rigid-flexible coupling dynamics of an elastic beam. J. Sound Vib. 278, 1147–1162 (2004)

    Article  Google Scholar 

  8. Chen, S.J., Zhang, D.G., Hong, J.Z.: A high-order rigid-flexible coupling model of a rotating flexible beam under large deformation. Chin. J. Theor. Appl. Mech. 45, 251–256 (2013)

    Google Scholar 

  9. Li, L., Zhang, D.G., Zhu, W.D.: Free vibration analysis of a rotating hub-functionally graded material beam system with the dynamic stiffening effect. J. Sound Vib. 333, 1526–1541 (2014)

    Article  Google Scholar 

  10. Fan, J.H., Zhang, D.G.: Bezier interpolation method for the dynamics of rotating flexible cantilever beam. Acta Phys. Sin. 63, 154501 (2014)

    Google Scholar 

  11. Li, L., Zhang, D.G.: Free vibration analysis of rotating functionally graded rectangular plates. Compos. Struct. 136, 493–504 (2016)

    Article  Google Scholar 

  12. Shabana, A.A.: Finite element incremental approach and exact rigid body inertia. J. Mech. Des. 118, 171–178 (1996)

    Article  Google Scholar 

  13. Berzeri, M., Shabana, A.A.: Study of the centrifugal stiffening effect using the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 7, 357–387 (2002)

    Article  MATH  Google Scholar 

  14. García-Vallejo, D., Sugiyama, H., Shabana, A.A.: Finite element analysis of the geometric stiffening effect. Part 1: a correction in the floating frame of reference formulation. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 219, 187–202 (2005)

    Google Scholar 

  15. García-Vallejo, D., Sugiyama, H., Shabana, A.A.: Finite element analysis of the geometric stiffening effect. Part 2: non-linear elasticity. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 219, 203–211 (2005)

    Article  Google Scholar 

  16. Maqueda, L.G., Bauchau, O.A., Shabana, A.A.: Effect of the centrifugal forces on the finite element eigenvalue solution of a rotating blade: a comparative study. Multibody Syst. Dyn. 19, 281–302 (2008)

    Article  MATH  Google Scholar 

  17. Zhao, J., Tian, Q., Hu, H.Y.: Modal analysis of a rotating thin plate via absolute nodal coordinate formulation. J. Comput. Nonlinear Dyn. 6, 1209–1220 (2011)

    Article  Google Scholar 

  18. Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318, 461–487 (2008)

    Article  Google Scholar 

  19. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243, 565–576 (2001)

    Article  Google Scholar 

  20. Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal coordinate formulation. J. Sound Vib. 235, 539–565 (2000)

    Article  Google Scholar 

  21. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  MATH  Google Scholar 

  22. Bauchau, O.A., Han, S., Mikkola, A., Matikainen, M.K.: Comparison of the absolute nodal coordinate and geometrically exact formulations for beams. Multibody Syst. Dyn. 32, 67–85 (2013)

    Article  MathSciNet  Google Scholar 

  23. Gerstmayr, J., Sugiyama, H., Mikkola, A.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8, 369–384 (2013)

    Google Scholar 

  24. Lan, P., Shabana, A.A.: Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dyn. 61, 193–206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tian, Q., Zhang, Y.Q., Chen, L.P., Yang, J.Z.: Simulation of planar flexible multibody systems with clearance and lubricated revolute joints. Nonlinear Dyn. 60, 489–511 (2010)

    Article  MATH  Google Scholar 

  26. Liu, C., Tian, Q., Hu, H.Y.: New spatial curved beam and cylindrical shell elements of gradient-deficient absolute nodal coordinate formulation. Nonlinear Dyn. 70, 1903–1918 (2012)

    Article  MathSciNet  Google Scholar 

  27. Zhang, X.S., Zhang, D.G., Chen, S.J., Hong, J.Z.: Several dynamic models of a large deformation flexible beam based on the absolute nodal coordinate formulation. Acta Phys. Sin. 65, 094501 (2016)

    Google Scholar 

  28. Shabana, A.A.: ANCF tire assembly model for multibody system applications. J. Comput. Nonlinear Dyn. 10, 024504 (2015)

    Article  Google Scholar 

  29. Yoo, H.H., Seo, S., Huh, K.: The effect of a concentrated mass on the modal characteristics of a rotating cantilever beam. Part C: J. Mech. Eng. Sci. 216, 151–163 (2002)

  30. Fang, J.S., Zhang, D.G.: Dynamic modeling and frequency analysis of a rotating cantilever beam with a concentrated mass. Mech. Sci. Technol. Aerosp. Eng. 30, 1471–1476 (2011)

    Google Scholar 

  31. Putter, S., Manor, H.: Natural frequencies of radial rotating beams. J. Sound Vib. 56, 175–185 (1978)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express the sincere thanks to Prof. Ahmed A. Shabana from University of Illinois at Chicago for his valuable comments and suggestions. The authors are grateful for the support from the National Natural Science Foundation of China (Grant Numbers 11272155, 11302192, and 11132007), the 333 Project of Jiangsu Province in China (Grant Number BRA2011172).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingguo Zhang.

Appendix

Appendix

The dimensionless form of the Eq. (40) can be obtained by using the dimensionless variables and parameters defined in Eq. (45)

$$\begin{aligned} \bar{{\varvec{M}}}\frac{\partial ^{2}\bar{{\varvec{q}}}_a }{\partial \tau ^{2}}+\bar{\varvec{{\varvec{Q}}}}_{\mathrm{T}} =\lambda ^{{2}}\delta \bar{\varvec{{\varvec{S}}}}_x \end{aligned}$$
(49)

where

$$\begin{aligned}&\bar{{\varvec{M}}}=\bar{{\varvec{M}}}_a +\bar{\varvec{{\varvec{M}}}}^{{*}} \end{aligned}$$
(50)
$$\begin{aligned}&\bar{\varvec{{\varvec{M}}}}_a =\sum _{e=1}^n {{\varvec{B}}_e ^\mathrm{T}\bar{\varvec{{\varvec{M}}}}_e {\varvec{B}}_e } \end{aligned}$$
(51)
$$\begin{aligned}&\bar{\varvec{{M}}}_e =\frac{1}{n}\int _{ 0}^{ 1} { \bar{\varvec{{S}}}(\eta )^\mathrm{T}\bar{\varvec{{S}}}(\eta )d\eta } \end{aligned}$$
(52)
$$\begin{aligned}&\bar{\varvec{{M}}}^{{*}}=\alpha {\varvec{B}}_k ^{\mathrm{T}}\bar{\varvec{{S}}}^{\mathrm{T}}(\frac{\Delta l}{L})\bar{\varvec{{S}}}(\frac{\Delta l}{L}){\varvec{B}}_k \end{aligned}$$
(53)
$$\begin{aligned}&\frac{\Delta l}{L}=\beta -\frac{k-1}{n} \end{aligned}$$
(54)
$$\begin{aligned}&\bar{\varvec{{S}}}_x =\bar{\varvec{{S}}}_{x1} +\bar{\varvec{{S}}}_{x1}^\mathrm{*} \end{aligned}$$
(55)
$$\begin{aligned}&\bar{\varvec{{S}}}_{x1} =\frac{1}{n}\sum _{e=1}^n {{\varvec{B}}_e^\mathrm{T} } \int _0^1 {\bar{\varvec{{S}}}_1^\mathrm{T} \mathrm{d}\eta } \end{aligned}$$
(56)
$$\begin{aligned}&\bar{\varvec{{S}}}_{x1}^{*} =\alpha {\varvec{B}}_k^\mathrm{T} \bar{\varvec{{S}}}_1^\mathrm{T} (\Delta l) \end{aligned}$$
(57)
$$\begin{aligned}&\bar{\varvec{{Q}}}_{\mathrm{T}} =-\lambda ^{{2}}\bar{\varvec{{M}}\bar{{\varvec{q}}}}_a -\bar{\varvec{{Q}}}_{fa} \end{aligned}$$
(58)
$$\begin{aligned}&\bar{\varvec{{Q}}}_{f a} =\sum _{e=1}^n {{\varvec{B}}_e ^\mathrm{T}\bar{\varvec{{Q}}}_{f e} } \end{aligned}$$
(59)
$$\begin{aligned} \bar{\varvec{{Q}}}_{f e}= & {} -n\mu ^{2}\int _0^1 {\bar{{\varepsilon }}_{x0} \bar{\varvec{{{S}}}}^{{\prime \mathrm{T}}}\bar{\varvec{{{S}'}}} \bar{\varvec{{q}}}_e \mathrm{d}\eta } \nonumber \\&-\int _0^1 {\bar{{\kappa }}\cdot \left( {\frac{n^{2}\bar{\varvec{{\varGamma }}} }{\bar{{f}}^{3}}-3n\frac{\bar{{\kappa }}}{\bar{{f}}^{2}}\bar{\varvec{{{S}'}}}^{\mathrm{T}}\bar{\varvec{{{S}'}}} } \right) \bar{\varvec{{q}}}_e \mathrm{d}\eta } \end{aligned}$$
(60)
$$\begin{aligned} \bar{\varvec{{\varGamma }}}= & {} \bar{\varvec{{{S}'}}}^{\mathrm{T}}\varvec{\tilde{I}}^\mathrm{T}\bar{\varvec{{{S}''}}}+\bar{\varvec{{{S}''}}}^{\mathrm{T}}\varvec{\tilde{I}} \bar{\varvec{{{S}'}}} \end{aligned}$$
(61)
$$\begin{aligned} \bar{{\varepsilon }}_{x0}= & {} \frac{1}{2}\left[ {n^{2}\bar{\varvec{{q}}}_e^\mathrm{T} \bar{{{\varvec{S}}'}}^{\mathrm{T}}\bar{{{\varvec{S}}'}}\bar{\varvec{{q}}}_e -1} \right] \end{aligned}$$
(62)
$$\begin{aligned} \bar{{f}}= & {} n\sqrt{\bar{\varvec{{q}}}_e^\mathrm{T} \bar{{{\varvec{S}}'}}^{\mathrm{T}}\bar{{{\varvec{S}}'}}\bar{\varvec{{q}}}_e } \end{aligned}$$
(63)
$$\begin{aligned} \bar{{\kappa }}= & {} n^{3}\bar{{{\varvec{S}}'}}\bar{\varvec{{q}}}_e \times \bar{{{\varvec{S}}''}}\bar{\varvec{{q}}}_e /\bar{{f}}^{3} \end{aligned}$$
(64)
$$\begin{aligned} \bar{\varvec{{q}}}_a= & {} {\varvec{q}}_a /L \end{aligned}$$
(65)
$$\begin{aligned} \bar{{\varvec{q}}}_e= & {} \frac{1}{L}\left[ {{\begin{array}{cccccccc} {\bar{{e}}_1 }&{} {\bar{{e}}_2 }&{} {\bar{{e}}_3 }&{} {\bar{{e}}_4 }&{} {\bar{{e}}_5 }&{} {\bar{{e}}_6 }&{} {\bar{{e}}_7 }&{} {\bar{{e}}_8 } \\ \end{array} }} \right] ^{\mathrm{T}} \end{aligned}$$
(66)

In which, the vector of absolute nodal coordinates includes the global position

$$\begin{aligned} \bar{{e}}_1= & {} \left. {r_1 } \right| _{x=0} ,\;\;\bar{{e}}_2 =\left. {r_2 } \right| _{x=0} \nonumber \\ \bar{{e}}_5= & {} \left. {r_1 } \right| _{x=l} ,\;\;\bar{{e}}_6 =\left. {r_2 } \right| _{x=l} \end{aligned}$$
(67)

and the gradients of the global position vector at element nodes multiplied by l,the length of the elements, are defined as

$$\begin{aligned} \bar{{e}}_3= & {} \left. {l\frac{\partial r_1 }{\partial x}} \right| _{x=0} ,\bar{{e}}_4 =l\left. {\frac{\partial r_2 }{\partial x}} \right| _{x=0} \nonumber \\ \bar{{e}}_7= & {} \left. {l\frac{\partial r_1 }{\partial x}} \right| _{x=l} ,\bar{{e}}_8 =l\left. {\frac{\partial r_2 }{\partial x}} \right| _{x=l} \end{aligned}$$
(68)

In which, the global shape function matrix \(\bar{{\varvec{S}}}\) can be rewritten as

$$\begin{aligned}&\bar{{\varvec{S}}}=\left[ {{\begin{array}{l} {\bar{\varvec{{s}}}_1 } \\ {\bar{\varvec{{s}}}_2 } \\ \end{array} }} \right] =\left[ {{\begin{array}{cccccccc} {\bar{{s}}_1 }&{} 0&{} {\bar{{s}}_2 }&{} 0&{} {\bar{{s}}_3 }&{} 0&{} {\bar{{s}}_4 }&{} 0 \\ 0&{} {\bar{{s}}_1 }&{} 0&{} {\bar{{s}}_2 }&{} 0&{} {\bar{{s}}_3 }&{} 0&{} {\bar{{s}}_4 } \\ \end{array} }} \right] \end{aligned}$$
(69)
$$\begin{aligned}&\left\{ {{\begin{array}{l} {\bar{{s}}_1 =1-3\eta ^{2}+2\eta ^{3}} \\ {\bar{{s}}_2 =\eta -2\eta ^{2}+\eta ^{3}\;} \\ {\bar{{s}}_3 =3\eta ^{2}-2\eta ^{3}\;\;\;\;} \\ {\bar{{s}}_4 =-\eta ^{2}+\eta ^{3}\;\;\;\;\;} \\ \end{array} }} \right. \end{aligned}$$
(70)
$$\begin{aligned}&\eta =\frac{n}{L}x\;\;,\;\;\eta \in [{\begin{array}{cc} 0&{} 1 \\ \end{array} }] \end{aligned}$$
(71)
$$\begin{aligned}&\bar{{{\varvec{S}}'}}=\frac{\partial \bar{{\varvec{S}}}}{\partial \eta } \end{aligned}$$
(72)
$$\begin{aligned}&\bar{{{\varvec{S}}''}}=\frac{\partial ^{2}\bar{{\varvec{S}}}}{\partial \eta ^{2}} \end{aligned}$$
(73)

The dimensionless form of the Eq. (41) of the system is obtained as Eq. (46).

In Eq. (46)

$$\begin{aligned}&\bar{\varvec{{K}}}_{\mathrm{T}} =\bar{\varvec{{K}}}_a -\lambda ^{2}\bar{\varvec{{M}}} \end{aligned}$$
(74)
$$\begin{aligned}&\bar{\varvec{{K}}}_a =\sum _{e=1}^n {{\varvec{B}}_e^\mathrm{T} \bar{\varvec{{K}}}_e {\varvec{B}}_e } \end{aligned}$$
(75)
$$\begin{aligned}&\bar{\varvec{{\chi }}}(\tau )=\frac{1}{L}\varvec{\chi }(t) \end{aligned}$$
(76)
$$\begin{aligned}&\bar{\varvec{{K}}}_e =\mu ^{2}(n^{3}\int _0^1 { \bar{\varvec{{{S}'}}}^{\mathrm{T}}\bar{\varvec{{{S}'}}} \bar{\varvec{{q}}}_e \bar{\varvec{{q}}}_e^\mathrm{T} \bar{\varvec{{{S}'}}}^{\mathrm{T}}\bar{\varvec{{{S}'}}} \mathrm{d}\eta } +n\int _0^1 { \bar{{\varepsilon }}_{x0} \bar{\varvec{{{S}'}}}^{\mathrm{T}}\bar{\varvec{{{S}'}}} \mathrm{d}\eta )} \nonumber \\&\quad +\frac{1}{n}\int _0^1 \left( {\frac{n^{3}\bar{\varvec{{\varGamma }}} }{\bar{{f}}^{3}}-3n^{2}\frac{\bar{{\kappa }}}{\bar{{f}}^{2}}\bar{\varvec{{{S}'}}}^{\mathrm{T}}\bar{\varvec{{{S}'}}} } \right) \bar{\varvec{{q}}}_e \bar{\varvec{{q}}}_e^\mathrm{T} \nonumber \\&\quad \times \left( \frac{n^{3}\bar{\varvec{{\varGamma }}}^{\mathrm{T}} }{\bar{{f}}^{3}}-3n^{2}\frac{\bar{{\kappa }}}{\bar{{f}}^{2}}\bar{\varvec{{{S}'}}}^{\mathrm{T}}\bar{\varvec{{{S}'}}} \right) \mathrm{d}\eta \nonumber \\&+\frac{1}{n}\int _0^1 \bar{{\kappa }}\left( \frac{n^{3}\bar{\varvec{{\varGamma }}}^{\mathrm{T}} }{\bar{{f}}^{3}}-3n^{2}\frac{\bar{{\kappa }}}{\bar{{f}}^{2}}\bar{\varvec{{{S}'}}}^{\mathrm{T}}\bar{\varvec{{{S}'}}} \right) \mathrm{d}\eta \nonumber \\&+\frac{1}{n}\int _0^1 \bar{{\kappa }}\left( -6\frac{n^{5}\bar{\varvec{{\varGamma }}} }{\bar{{f}}^{5}}\bar{\varvec{{q}}}_e \bar{\varvec{{q}}}_e^\mathrm{T} \bar{\varvec{{{S}'}}}^{\mathrm{T}}\bar{\varvec{{{S}'}}}\right. \nonumber \\&\left. +15\bar{{\kappa }}\frac{1}{\bar{{f}}^{4}}n^{4}\bar{\varvec{{{S}'}}}^{\mathrm{T}}\bar{\varvec{{{S}'}}\bar{{q}}}_e \bar{\varvec{{q}}}_e^\mathrm{T} \bar{\varvec{{{S}'}}}^{\mathrm{T}}\bar{\varvec{{{S}'}}} \right) \mathrm{d}\eta \end{aligned}$$
(77)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, D., Chen, S. et al. Modal characteristics of a rotating flexible beam with a concentrated mass based on the absolute nodal coordinate formulation. Nonlinear Dyn 88, 61–77 (2017). https://doi.org/10.1007/s11071-016-3230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3230-2

Keywords

Navigation