Skip to main content
Log in

Comparison of finite element methods for dynamic analysis about rotating flexible beam

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dynamic analysis of flexible body under large rotation becomes increasingly important in many engineering applications. This work takes rotating flexible beam as numerical example under assumptions of straight beam, small deformation and fixed axis rotation. Results of six finite element methods are compared: floating frame of reference formulation (FFRF), generalized component mode synthesis (GCMS), total Lagrangian formulation (TLF), linear Euler–Bernoulli beam (LEBB), nonlinear Euler–Bernoulli beam (NEBB) and absolute nodal coordinate formulation (ANCF). Due to the effect of geometric nonlinearity or centrifugal stiffening, the results of linear methods FFRF, GCMS and LEBB are different to geometrically nonlinear methods TLF, NEBB and ANCF. Three points of view are obtained through numerical result analysis. Firstly, based on the equivalence between FFRF and GCMS, a special type of parametrically excited nonlinear system is equivalent to linear system, so as to analyze the Lyapunov stability of its solution. Secondly, for the ANCF, the system invariant matrix is presented to calculate elastic force, which avoids element integration or assembling in each time step, and then the computational efficiency is improved by at least an order of magnitude when compared to adopting element invariant matrix. Thirdly, for GCMS, TLF and ANCF, the velocity of relative coordinate for deformation is adopted to calculate linear internal damping force, which gets different deflection result in comparison with adopting velocity of absolute coordinate for deformation, under large rotational speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The presented methods are implemented in C++, and the results of numerical examples can be replicated on the basis of supplementary material.

References

  1. Ziegler, P., Eberhard, P.: Simulative and experimental investigation of impacts on gear wheels. Comput. Methods Appl. Mech. Eng. 197, 4653–4662 (2008)

    MATH  Google Scholar 

  2. Zwölfer, A., Gerstmayr, J.: Preconditioning strategies for linear dependent generalized component modes in 3D flexible multibody dynamics. Multibody Syst. Dyn. 47, 65–93 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Thube, S.V., Bobak, T.R.: Dynamic Analysis of a Cycloidal Gearbox Using Finite Element Method. AGMA Technical Paper, Virginia (2012)

    Google Scholar 

  4. Hastings, G.G., Book, W.J.: A linear dynamic model for flexible robotic manipulators. IEEE Contr. Syst. Mag. 7, 61–64 (1987)

    Google Scholar 

  5. Yang, H., Hong, J., Yu, Z.: Dynamics modelling of a flexible hub-beam system with a tip mass. J. Sound Vib. 266, 759–774 (2003)

    Google Scholar 

  6. Bayoumy, A.H., Nada, A.A., Megahed, S.M.: A continuum based three-dimensional modeling of wind turbine blades. J. Comput. Nonlinear Dyn. 8, 031004 (2013)

    Google Scholar 

  7. Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  8. Belytschko, T., Liu, W.K., Moran, B., Elkhodary, K.I.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chiechester (2014)

    MATH  Google Scholar 

  9. Likins, P.W.: Finite element appendage equations for hybrid coordinate dynamic analysis. Int. J. Solids Struct. 8, 709–731 (1972)

    MATH  Google Scholar 

  10. Pechstein, A., Reischl, D., Gerstmayr, J.: A generalized component mode synthesis approach for flexible multibody systems with a constant mass matrix. J. Comput. Nonlinear Dyn. 8, 011019 (2013)

    Google Scholar 

  11. Zwölfer, A., Gerstmayr, J.: The nodal-based floating frame of reference formulation with modal reduction. Acta. Mech. 232, 835–851 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Orzechowski, G., Matikainen, M.K., Mikkola, A.M.: Inertia forces and shape integrals in the floating frame of reference formulation. Nonlinear Dyn. 88, 1953–1968 (2017)

    Google Scholar 

  13. Huang, G., Zhu, W., Yang, Z., Feng, C., Chen, X.: Reanalysis-based fast solution algorithm for flexible multi-body system dynamic analysis with floating frame of reference formulation. Multibody Syst. Dyn. 49, 271–289 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Schilder, J., Dwarshuis, K., Ellenbroek, M., de Boer, A.: The tangent stiffness matrix for an absolute interface coordinates floating frame of reference formulation. Multibody Syst. Dyn. 47, 243–263 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Cammarata, A., Pappalardo, C.M.: On the use of component mode synthesis methods for the model reduction of flexible multibody systems within the floating frame of reference formulation. Mech. Syst. Signal Process. 142, 106745 (2020)

    Google Scholar 

  16. Shabana, A.A., Wang, G.: Durability analysis and implementation of the floating frame of reference formulation. Proc. Inst. Mech. Eng. Part K J. Multi-body Dyn. 232, 295–313 (2018)

    Google Scholar 

  17. Gerstmayr, J., Schöberl, J.: A 3D finite element method for flexible multibody systems. Multibdody Syst. Dyn. 15, 309–324 (2006)

    MathSciNet  MATH  Google Scholar 

  18. Gerstmayr, J., Ambrósio, J.A.C.: Component mode synthesis with constant mass and stiffness matrices applied to flexible multibody systems. Int. J. Numer. Methods Eng. 73, 1518–1546 (2008)

    MATH  Google Scholar 

  19. Ziegler, P., Humer, A., Pechstein, A., Gerstmayr, J.: Generalized component mode synthesis for the spatial motion of flexible bodies with larger rotations about one axis. J. Comput. Nonlinear Dyn. 11, 041018 (2016)

    Google Scholar 

  20. Lin, T., Peng, Q., Liu, W., Chen, B.: Centrifugal stiffening analysis of gear pair with generalized component mode synthesis and semi-analytic contact technique. Meccanica 55, 567–579 (2020)

    MathSciNet  Google Scholar 

  21. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method. Elsevier Butterworth-Heinemann, Oxford (2005)

    MATH  Google Scholar 

  22. Kee, Y.J., Shin, S.J.: Structural dynamic modeling for rotating blades using three dimensional finite elements. J. Mech. Sci. Technol. 29, 1607–1618 (2015)

    Google Scholar 

  23. Kim, Y.S., Cho, J.R.: Numerical analysis of rollover and head-on crash response of non-step bus. Int. J. Mod. Phy. B 22, 1736–1741 (2008)

    Google Scholar 

  24. Tang, S.C., Pan, J.: Mechanics Modeling of Sheet Metal Forming. SAE International, Warrendale (2007)

    Google Scholar 

  25. Taylor, Z.A., Cheng, M., Ourselin, S.: High-speed nonlinear finite element analysis for surgical simulation using graphics processing units. IEEE Trans. Med. Imaging 27, 650–663 (2008)

    Google Scholar 

  26. Joldes, G.R., Wittek, A., Miller, K.: Real-time nonlinear finite element computations on GPU - Application to neurosurgical simulation. Comput. Methods Appl. Mech. Eng. 199, 3305–3314 (2010)

    MATH  Google Scholar 

  27. Laiarinandrasana, L., Piques, R., Robisson, A.: Visco-hyperelastic model with internal state variable coupled with discontinuous damage concept under total Lagrangian formulation. Int. J. Plasticity 19, 977–1000 (2003)

    MATH  Google Scholar 

  28. Siqueira, T.M., Coda, H.B.: Total Lagrangian FEM formulation for nonlinear dynamics of sliding connections in viscoelastic plane structures and mechanisms. Finite Elem. Anal. Des. 129, 63–77 (2017)

    MathSciNet  Google Scholar 

  29. Castañar, I., Baiges, J., Codina, R.: A stabilized mixed finite element approximation for incompressible finite strain solid dynamics using a total Lagrangian formulation. Comput. Methods Appl. Mech. Eng. 368, 113164 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Tojaga, V., Hazar, S., Östlund, S.: Compressive failure of fiber composites containing stress concentration: homogenization with fiber-matrix interfacial decohesion based on a total Lagragian formulation. Compos. Sci. Technol. 182, 107758 (2019)

    Google Scholar 

  31. Zhang, X., Wang, T., Liu, Y.: Computational Dynamics. Tsinghua University Press, Beijing (2015)

    Google Scholar 

  32. Liu, Z., Liu, J.: Experimental validation of rigid-flexible coupling dynamic formulation for hub-beam system. Multibody Syst. Dyn. 40, 303–326 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Wang, G., Qi, Z., Xu, J.: A high-precision co-rotational formulation of 3D beam elements for dynamic analysis of flexible multibody systems. Comput. Methods Appl. Mech. Eng. 360, 112701 (2020)

    MathSciNet  MATH  Google Scholar 

  34. Sun, Q.: An existence condition for the inverse dynamics solution of a slewing Euler-Bernoulli beam. Mech. Mach. Theory 46, 845–860 (2011)

    MATH  Google Scholar 

  35. Lu, J., Sun, X., Vakakis, A.F., Bergman, L.A.: Influence of backlash in gear reducer on dynamic of single-link manipulator arm. Robotica 33, 1671–1685 (2015)

    Google Scholar 

  36. Kim, K., Ri, K., Yun, C., Pak, C., Han, P.: Nonlinear forced vibration analysis of composite beam considering internal damping. Nonlinear Dyn. 107, 3407–3423 (2022)

    Google Scholar 

  37. Mayo, J., Dominguez, J., Shabana, A.A.: Geometrically nonlinear formulations of beams in flexible multibody dynamics. J. Vib. Acoust. 117, 501–509 (1995)

    Google Scholar 

  38. Liu, Z., Hong, J., Liu, J.: Finite element formulation for dynamics of planar flexible multi-beam system. Multibody Syst. Dyn. 22, 1–26 (2009)

    MathSciNet  MATH  Google Scholar 

  39. Zhao, G., Wu, Z.: Coupling vibration analysis of rotating three-dimensional cantilever beam. Comput. Struct. 179, 64–74 (2017)

    Google Scholar 

  40. Torteman, B., Kessler, Y., Liberzon, A., Krylov, S.: Micro-beam resonator parametrically excited by electro-thermal Joule’s heating and its use as a flow sensor. Nonlinear Dyn. 98, 3051–3065 (2019)

    Google Scholar 

  41. Wang, L., Peng, J., Zhang, X., Qiao, W., He, K.: Nonlinear resonant response of the cable-stayed beam with one-to-one internal resonance in veering and crossover regions. Nonlinear Dyn. 103, 115–135 (2021)

    Google Scholar 

  42. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: Theory. J. Mech. Des. 123, 606–613 (2001)

    Google Scholar 

  43. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123, 614–621 (2001)

    Google Scholar 

  44. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 359–384 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Obrezkov, L.P., Mikkola, A., Matikainen, M.K.: Performance review of locking alleviation methods for continuum ANCF beam elements. Nonlinear Dyn. 109, 531–546 (2022)

    Google Scholar 

  46. Patel, M., Shabana, A.A.: Locking alleviation in the large displacement analysis of beam elements: the strain split method. Acta. Mech. 229, 2923–2946 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Shen, Z., Li, P., Liu, C.: A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation. Nonlinear Dyn. 77, 1019–1033 (2014)

    Google Scholar 

  48. Vallejo, D.G., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50, 249–264 (2007)

    MATH  Google Scholar 

  49. Vallejo, D.G., Mayo, J., Escalona, J.L., Domínguez, J.: Efficient evaluation of the elastic forces and the Jocobian in the absolute nodal coordinate formulation. Nonlinear Dyn. 35, 313–329 (2004)

    MATH  Google Scholar 

  50. Dibold, M., Gerstmayr, J., Irschik, H.: A detailed comparison of the absolute nodal coordinate and the floating frame of reference formulation in deformable multibody systems. J. Comput. Nonlinear Dyn. 4, 021006 (2009)

    Google Scholar 

  51. Vallejo, D.G., Valverde, J., Domínguez, J.: An internal damping model for the absolute nodal coordinate formulation. Nonlinear Dyn. 42, 347–369 (2005)

    MathSciNet  MATH  Google Scholar 

  52. Inman, D.J.: Engineering Vibration. Pearson, Essex (2014)

    Google Scholar 

  53. Greenwood, D.T.: Advanced Dynamics. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  54. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006)

    MATH  Google Scholar 

  55. Wang, X.: Finite Element Method. Tsinghua University Press, Beijing (2003)

    Google Scholar 

  56. Mahdiabadi, M.K., Tiso, P., Brandt, A., Rixen, D.J.: A non-intrusive model-order reduction of geometrically nonlinear structural dynamics using modal derivatives. Mech. Syst. Signal Process. 147, 107126 (2021)

    Google Scholar 

  57. Lee, J.W., Kim, H.W., Ku, H.C., Yoo, W.S.: Comparison of external damping models in a large deformation problem. J. Sound Vib. 325, 722–741 (2009)

    Google Scholar 

  58. Sauer, T.: Numerical Analysis. Pearson, Boston (2012)

    MATH  Google Scholar 

  59. LSTC: LS-DYNA Theory Manual. LSTC, Livermore (2014)

  60. Rao, S.S.: Mechanical Vibrations. Pearson, Harlow (2018)

    Google Scholar 

  61. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, Weinheim (2004)

    MATH  Google Scholar 

  62. Zhang, J.: A direct Jacobian total Lagrangian explicit dynamics finite element algorithm for real-time simulation of hyperelastic materials. Int. J. Numer. Methods Eng. 122, 5744–5772 (2021)

  63. Li, P., Liu, C., Tian, Q., Hu, H., Song, Y.: Dynamics of a deployable mesh reflector of satellite antenna: parallel computation and deployment simulation. J. Comput. Nonlinear Dyn. 11, 061005 (2016)

    Google Scholar 

  64. Liu, J., Pan, K.: Rigid-flexible-thermal coupling dynamic formulation for satellite and plate multibody system. Aerosp. Sci. Technol. 52, 102–114 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the open-source library Eigen (http://eigen.tuxfamily.org/index.php?title=Main_Page) from eigenproject team and the open source library Spectra (http://spectralib.org/index.html) from Yixuan Qiu.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The first draft of the manuscript was written by Quancheng Peng, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Quancheng Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Appendix

Appendix

$$\begin{aligned}{} & {} \begin{aligned}&{\varvec{M}_{\mathrm{{rr}}e}} = \left[ {\begin{array}{cc} {{M_{\mathrm{{rr}}1e}}}&{}0\\ 0&{}{{M_{\mathrm{{rr}}1e}}} \end{array}} \right] + \left[ {\begin{array}{cc} {\varvec{W}_{\mathrm{{f}}e}^\mathrm{{T}}}&{}\varvec{0}\\ \varvec{0}&{}{\varvec{W}_{\mathrm{{f}}e}^\mathrm{{T}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\varvec{M}_{\mathrm{{rr}}2e}}}\\ {{\varvec{M}_{\mathrm{{rr}}3e}}} \end{array}} \right] \\&\quad + \left[ {\begin{array}{cc} {{\varvec{M}_{\mathrm{{rr}}4e}}}&{{\varvec{M}_{\mathrm{{rr}}5e}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\varvec{W}_{\mathrm{{f}}e}}}&{}\varvec{0}\\ \varvec{0}&{}{{\varvec{W}_{\mathrm{{f}}e}}} \end{array}} \right] \\&\quad + \left[ {\begin{array}{cc} {\varvec{W}_{\mathrm{{f}}e}^\mathrm{{T}}}&{}\varvec{0}\\ \varvec{0}&{}{\varvec{W}_{\mathrm{{f}}e}^\mathrm{{T}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\varvec{M}_{\mathrm{{rr}}6e}}}&{}{{\varvec{M}_{\mathrm{{rr}}7e}}}\\ {{\varvec{M}_{\mathrm{{rr}}8e}}}&{}{{\varvec{M}_{\mathrm{{rr}}9e}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\varvec{W}_{\mathrm{{f}}e}}}&{}\varvec{0}\\ \varvec{0}&{}{{\varvec{W}_{\mathrm{{f}}e}}} \end{array}} \right] \end{aligned} \end{aligned}$$
(70)
$$\begin{aligned}{} & {} \begin{aligned} {M_{\mathrm{{rr}}1e}} = {l_e} \cdot \rho \cdot \int _0^1 {{X_0^2 \cdot A + {I_Z}}\mathrm{{d}}\xi } \end{aligned} \end{aligned}$$
(71)
$$\begin{aligned}{} & {} \begin{aligned}&{\varvec{M}_{\mathrm{{rr}}2e}} = \\ {}&{l_e} \cdot \rho \cdot \int _0^1 {\varvec{N}_\mathrm{{E}}^\mathrm{{T}}\mathrm{{(}}\xi \mathrm{{)}} \cdot \left[ {{\begin{matrix} {{X_0} \cdot A}&{}{ - {S_Z}}\\ {{S_Z}}&{}{{X_0} \cdot A}\\ 0&{}0\\ { - {I_{YZ}}}&{}{ - {X_0} \cdot {S_Y}}\\ {{X_0} \cdot {S_Y}}&{}{ - {I_{YZ}}}\\ { - {X_0} \cdot {S_Z}}&{}{{I_Z}} \end{matrix}}} \right] \mathrm{{d}}\xi } \end{aligned} \end{aligned}$$
(72)
$$\begin{aligned}{} & {} \begin{aligned}&{\varvec{M}_{\mathrm{{rr}}3e}} = \\ {}&{l_e} \cdot \rho \cdot \int _0^1 {\varvec{N}_\mathrm{{E}}^\mathrm{{T}}\mathrm{{(}}\xi \mathrm{{)}} \cdot \left[ {{\begin{matrix} {{S_Z}}&{}{{X_0} \cdot A}\\ { - {X_0} \cdot A}&{}{{S_Z}}\\ 0&{}0\\ {{X_0} \cdot {S_Y}}&{}{ - {I_{YZ}}}\\ {{I_{YZ}}}&{}{{X_0} \cdot {S_Y}}\\ { - {I_Z}}&{}{ - {X_0 \cdot S_Z}} \end{matrix}}} \right] \mathrm{{d}}\xi } \end{aligned} \end{aligned}$$
(73)
$$\begin{aligned}{} & {} \begin{aligned} {\varvec{M}_{\mathrm{{rr}}4e}} = {\varvec{M}_{\mathrm{{rr}}2e}^\mathrm{{T}}} \end{aligned} \end{aligned}$$
(74)
$$\begin{aligned}{} & {} \begin{aligned} {\varvec{M}_{\mathrm{{rr}}5e}} = {\varvec{M}_{\mathrm{{rr}}3e}^\mathrm{{T}}} \end{aligned} \end{aligned}$$
(75)
$$\begin{aligned}{} & {} \begin{aligned}&{\varvec{M}_{\mathrm{{rr}}6e}} = {l_e}\cdot \rho \cdot \\ {}&\int _0^1 {\varvec{N}_\mathrm{{E}}^\mathrm{{T}}\mathrm{{(}}\xi \mathrm{{)}} \cdot \left[ {{\begin{matrix} A&{}0&{}0&{}0&{}{{S_Y}}&{}{ - {S_Z}}\\ 0&{}A&{}0&{}{ - {S_Y}}&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0\\ 0&{}{ - {S_Y}}&{}0&{}{{I_Y}}&{}0&{}0\\ {{S_Y}}&{}0&{}0&{}0&{}{{I_Y}}&{}{ - {I_{YZ}}}\\ { - {S_Z}}&{}0&{}0&{}0&{}{ - {I_{YZ}}}&{}{{I_Z}} \end{matrix}}} \right] \cdot {\varvec{N}_\mathrm{{E}}}\mathrm{{(}}\xi \mathrm{{)d}}\xi } \end{aligned} \end{aligned}$$
(76)
$$\begin{aligned}{} & {} \begin{aligned}&{\varvec{M}_{\mathrm{{rr}}7e}} = {l_e}\cdot \rho \cdot \\ {}&\int _0^1 {\varvec{N}_\mathrm{{E}}^\mathrm{{T}}\mathrm{{(}}\xi \mathrm{{)}} \cdot \left[ {{\begin{matrix} 0&{}{ - A}&{}0&{}{{S_Y}}&{}0&{}0\\ A&{}0&{}0&{}0&{}{{S_Y}}&{}{ - {S_Z}}\\ 0&{}0&{}0&{}0&{}0&{}0\\ { - {S_Y}}&{}0&{}0&{}0&{}{ - {I_Y}}&{}{{I_{YZ}}}\\ 0&{}{ - {S_Y}}&{}0&{}{{I_Y}}&{}0&{}0\\ 0&{}{{S_Z}}&{}0&{}{ - {I_{YZ}}}&{}0&{}0 \end{matrix}}} \right] \cdot {\varvec{N}_\mathrm{{E}}}\mathrm{{(}}\xi \mathrm{{)d}}\xi } \end{aligned} \end{aligned}$$
(77)
$$\begin{aligned}{} & {} \begin{aligned} {\varvec{M}_{\mathrm{{rr}}8e}} = -{\varvec{M}_{\mathrm{{rr}}7e}} \end{aligned} \end{aligned}$$
(78)
$$\begin{aligned}{} & {} \begin{aligned} {\varvec{M}_{\mathrm{{rr}}9e}} = {\varvec{M}_{\mathrm{{rr}}6e}} \end{aligned} \end{aligned}$$
(79)
$$\begin{aligned}{} & {} \begin{aligned} {\varvec{M}_{\mathrm{{rf}}e}} = \tilde{\varvec{A}} \cdot {\varvec{M}_{\mathrm{{rf}}1e}} + \tilde{\varvec{A}} \cdot \left[ {\begin{array}{cc} {\varvec{W}_{\mathrm{{f}}e}^\mathrm{{T}}}&{}\varvec{0}\\ \varvec{0}&{}{\varvec{W}_{\mathrm{{f}}e}^\mathrm{{T}}} \end{array}} \right] \cdot \left[ {\begin{array}{cc} {{\varvec{M}_{\mathrm{{rf}}2e}}}\\ {{\varvec{M}_{\mathrm{{rf}}3e}}} \end{array}} \right] \end{aligned} \nonumber \\ \end{aligned}$$
(80)
$$\begin{aligned}{} & {} \begin{aligned}&{\varvec{M}_{\mathrm{{rf1}}e}} = {l_e}\cdot \rho \cdot \\ {}&\int _0^1 {\left[ {{\begin{matrix} {{X_0}A}&{}{{S_Z}}&{}0&{}{ - {I_{YZ}}}&{}{{X_0}{S_Y}}&{}{ - {X_0}{S_Z}}\\ { - {S_Z}}&{}{{X_0}A}&{}0&{}{ - {X_0}{S_Y}}&{}{ - {I_{YZ}}}&{}{{I_Z}} \end{matrix}}} \right] \cdot {N_\mathrm{{E}}}\mathrm{{(}}\xi \mathrm{{)d}}\xi } \end{aligned} \end{aligned}$$
(81)
$$\begin{aligned}{} & {} \begin{aligned}&{\varvec{M}_{\mathrm{{rf}}2e}} = {l_e}\cdot \rho \cdot \\ {}&\int _0^1 {\varvec{N}_\mathrm{{E}}^\mathrm{{T}}\mathrm{{(}}\xi \mathrm{{)}} \cdot \left[ {{\begin{matrix} A&{}0&{}0&{}0&{}{{S_Y}}&{}{ - {S_Z}}\\ 0&{}A&{}0&{}{ - {S_Y}}&{}0&{}0\\ 0&{}0&{}0&{}0&{}0&{}0\\ 0&{}{ - {S_Y}}&{}0&{}{{I_Y}}&{}0&{}0\\ {{S_Y}}&{}0&{}0&{}0&{}{{I_Y}}&{}{ - {I_{YZ}}}\\ { - {S_Z}}&{}0&{}0&{}0&{}{ - {I_{YZ}}}&{}{{I_Z}} \end{matrix}}} \right] \cdot {\varvec{N}_\mathrm{{E}}}\mathrm{{(}}\xi \mathrm{{)d}}\xi } \end{aligned} \end{aligned}$$
(82)
$$\begin{aligned}{} & {} \begin{aligned}&{\varvec{M}_{\mathrm{{rf}}3e}} = {l_e}\cdot \rho \cdot \\ {}&\int _0^1 {\varvec{N}_\mathrm{{E}}^\mathrm{{T}}\mathrm{{(}}\xi \mathrm{{)}} \cdot \left[ {{\begin{matrix} 0&{}A&{}0&{}{ - {S_Y}}&{}0&{}0\\ { - A}&{}0&{}0&{}0&{}{ - {S_Y}}&{}{{S_Z}}\\ 0&{}0&{}0&{}0&{}0&{}0\\ {{S_Y}}&{}0&{}0&{}0&{}{{I_Y}}&{}{ - {I_{YZ}}}\\ 0&{}{{S_Y}}&{}0&{}{ - {I_Y}}&{}0&{}0\\ 0&{}{ - {S_Z}}&{}0&{}{{I_{YZ}}}&{}0&{}0 \end{matrix}}} \right] \cdot {\varvec{N}_\mathrm{{E}}}\mathrm{{(}}\xi \mathrm{{)d}}\xi } \end{aligned} \end{aligned}$$
(83)
$$\begin{aligned}{} & {} \begin{aligned}&{\dot{\varvec{M}}_{\mathrm{{rr}}e}} = \left[ {\begin{array}{cc} {\dot{\varvec{W}}_{\mathrm{{f}}e}^\mathrm{{T}}}&{}\varvec{0}\\ \varvec{0}&{}{\dot{\varvec{W}}_{\mathrm{{f}}e}^\mathrm{{T}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\varvec{M}_{\mathrm{{rr}}2e}}}\\ {{\varvec{M}_{\mathrm{{rr}}3e}}} \end{array}} \right] \\&\quad + \left[ {\begin{array}{cc} {{\varvec{M}_{\mathrm{{rr}}4e}}}&{{\varvec{M}_{\mathrm{{rr}}5e}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\dot{\varvec{W}}_{\mathrm{{f}}e}}}&{}\varvec{0}\\ \varvec{0}&{}{{\dot{\varvec{W}}_{\mathrm{{f}}e}}} \end{array}} \right] \\&\quad + \left[ {\begin{array}{cc} {\dot{\varvec{W}}_{\mathrm{{f}}e}^\mathrm{{T}}}&{}\varvec{0}\\ \varvec{0}&{}{\dot{\varvec{W}}_{\mathrm{{f}}e}^\mathrm{{T}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\varvec{M}_{\mathrm{{rr}}6e}}}&{}{{\varvec{M}_{\mathrm{{rr}}7e}}}\\ {{\varvec{M}_{\mathrm{{rr}}8e}}}&{}{{\varvec{M}_{\mathrm{{rr}}9e}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\varvec{W}_{\mathrm{{f}}e}}}&{}\varvec{0}\\ \varvec{0}&{}{{\varvec{W}_{\mathrm{{f}}e}}} \end{array}} \right] \\&\quad + \left[ {\begin{array}{cc} {\varvec{W}_{\mathrm{{f}}e}^\mathrm{{T}}}&{}\varvec{0}\\ \varvec{0}&{}{\varvec{W}_{\mathrm{{f}}e}^\mathrm{{T}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\varvec{M}_{\mathrm{{rr}}6e}}}&{}{{\varvec{M}_{\mathrm{{rr}}7e}}}\\ {{\varvec{M}_{\mathrm{{rr}}8e}}}&{}{{\varvec{M}_{\mathrm{{rr}}9e}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\dot{\varvec{W}}_{\mathrm{{f}}e}}}&{}\varvec{0}\\ \varvec{0}&{}{{\dot{\varvec{W}}_{\mathrm{{f}}e}}} \end{array}} \right] \end{aligned} \end{aligned}$$
(84)
$$\begin{aligned}{} & {} \begin{aligned}&{\dot{\varvec{M}}_{\mathrm{{rf}}e}} = \dot{\tilde{\varvec{A}}} \cdot {\varvec{M}_{\mathrm{{rf}}1e}} + \dot{\tilde{\varvec{A}}} \cdot \left[ {\begin{array}{cc} {\varvec{W}_{\mathrm{{f}}e}^\mathrm{{T}}}&{}\varvec{0}\\ \varvec{0}&{}{\varvec{W}_{\mathrm{{f}}e}^\mathrm{{T}}} \end{array}} \right] \cdot \left[ {\begin{array}{cc} {{\varvec{M}_{\mathrm{{rf}}2e}}}\\ {{\varvec{M}_{\mathrm{{rf}}3e}}} \end{array}} \right] \\ {}&+ \tilde{\varvec{A}} \cdot \left[ {\begin{array}{cc} {\dot{\varvec{W}}_{\mathrm{{f}}e}^\mathrm{{T}}}&{}\varvec{0}\\ \varvec{0}&{}{\dot{\varvec{W}}_{\mathrm{{f}}e}^\mathrm{{T}}} \end{array}} \right] \cdot \left[ {\begin{array}{cc} {{\varvec{M}_{\mathrm{{rf}}2e}}}\\ {{\varvec{M}_{\mathrm{{rf}}3e}}} \end{array}} \right] \end{aligned} \end{aligned}$$
(85)
$$\begin{aligned}{} & {} \begin{aligned} \frac{{\partial {T_e}}}{{\partial {q_{ei}}}} = \frac{1}{2} \cdot \dot{\varvec{q}}_e^\mathrm{{T}} \cdot \frac{{\partial {\varvec{M}_e}}}{{\partial {q_{ei}}}} \cdot {\dot{\varvec{q}}_e} \end{aligned} \end{aligned}$$
(86)

where \(q_{ei}\) is the i-th component of vector \(\varvec{q}_e\).

$$\begin{aligned} \begin{aligned}&\frac{{\partial {\varvec{M}_{\mathrm{{rr}}e}}}}{{\partial {W_{\mathrm{{f}}ei}}}} = \left[ {\begin{array}{cc} {\varvec{H}_{\mathrm{{f}}ei}^\mathrm{{T}}}&{}\varvec{0}\\ \varvec{0}&{}{\varvec{H}_{\mathrm{{f}}ei}^\mathrm{{T}}} \end{array}} \right] \left[ {\begin{array}{c} {{\varvec{M}_{\mathrm{{rr}}2e}}}\\ {{\varvec{M}_{\mathrm{{rr}}3e}}} \end{array}} \right] \\&\quad + \left[ {\begin{array}{cc} {{\varvec{M}_{\mathrm{{rr}}4e}}}&{{\varvec{M}_{\mathrm{{rr}}5e}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\varvec{H}_{\mathrm{{f}}ei}}}&{}\varvec{0}\\ \varvec{0}&{}{{\varvec{H}_{\mathrm{{f}}ei}}} \end{array}} \right] \\&\quad + \left[ {\begin{array}{cc} {\varvec{H}_{\mathrm{{f}}ei}^\mathrm{{T}}}&{}\varvec{0}\\ \varvec{0}&{}{\varvec{H}_{\mathrm{{f}}ei}^\mathrm{{T}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\varvec{M}_{\mathrm{{rr}}6e}}}&{}{{\varvec{M}_{\mathrm{{rr}}7e}}}\\ {{\varvec{M}_{\mathrm{{rr}}8e}}}&{}{{\varvec{M}_{\mathrm{{rr}}9e}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\varvec{W}_{\mathrm{{f}}e}}}&{}\varvec{0}\\ \varvec{0}&{}{{\varvec{W}_{\mathrm{{f}}e}}} \end{array}} \right] \\&\quad + \left[ {\begin{array}{cc} {\varvec{W}_{\mathrm{{f}}e}^\mathrm{{T}}}&{}\varvec{0}\\ \varvec{0}&{}{\varvec{W}_{\mathrm{{f}}e}^\mathrm{{T}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\varvec{M}_{\mathrm{{rr}}6e}}}&{}{{\varvec{M}_{\mathrm{{rr}}7e}}}\\ {{\varvec{M}_{\mathrm{{rr}}8e}}}&{}{{\varvec{M}_{\mathrm{{rr}}9e}}} \end{array}} \right] \left[ {\begin{array}{cc} {{\varvec{H}_{\mathrm{{f}}ei}}}&{}\varvec{0}\\ \varvec{0}&{}{{\varvec{H}_{\mathrm{{f}}ei}}} \end{array}} \right] \end{aligned} \end{aligned}$$
(87)

where \(W_{\mathrm{{f}}ei}\) is the i-th component of vector \(\varvec{W}_{\mathrm{{f}}e}\), \({\varvec{H}_{\mathrm{{f}}ei}} = \frac{{\partial {\varvec{W}_{\mathrm{{f}}e}}}}{{\partial {W_{\mathrm{{f}}ei}}}}\).

$$\begin{aligned} \begin{aligned} \frac{{\partial {\varvec{M}_{\mathrm{{rf}}e}}}}{{\partial {q_{\mathrm{{r}}i}}}} = \frac{{\partial \tilde{\varvec{A}}}}{{\partial {q_{\mathrm{{r}}i}}}} \cdot {\varvec{M}_{\mathrm{{rf1}}e}} + \frac{{\partial \tilde{\varvec{A}}}}{{\partial {q_{\mathrm{{r}}i}}}} \cdot \left[ {\begin{array}{cc} {\varvec{W}_{\mathrm{{f}}e}^\mathrm{{T}}}&{}\varvec{0}\\ \varvec{0}&{}{\varvec{W}_{\mathrm{{f}}e}^\mathrm{{T}}} \end{array}} \right] \cdot \left[ {\begin{array}{c} {{\varvec{M}_{\mathrm{{rf2}}e}}}\\ {{\varvec{M}_{\mathrm{{rf3}}e}}} \end{array}} \right] \end{aligned} \end{aligned}$$
(88)

where \(q_{\mathrm{{r}}i}\) is the i-th component of vector \(\varvec{q}_\mathrm{{r}}\).

$$\begin{aligned} \begin{aligned} \frac{{\partial {\varvec{M}_{\mathrm{{rf}}e}}}}{{\partial {W_{\mathrm{{f}}ei}}}} = \tilde{\varvec{A}} \cdot \left[ {\begin{array}{cc} {\varvec{H}_{\mathrm{{f}}ei}^\mathrm{{T}}}&{}\varvec{0}\\ \varvec{0}&{}{\varvec{H}_{\mathrm{{f}}ei}^\mathrm{{T}}} \end{array}} \right] \cdot \left[ {\begin{array}{c} {{\varvec{M}_{\mathrm{{rf2}}e}}}\\ {{\varvec{M}_{\mathrm{{rf3}}e}}} \end{array}} \right] \end{aligned} \end{aligned}$$
(89)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, Q., Li, M. Comparison of finite element methods for dynamic analysis about rotating flexible beam. Nonlinear Dyn 111, 13753–13779 (2023). https://doi.org/10.1007/s11071-023-08568-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08568-7

Keywords

Navigation