Skip to main content
Log in

Three-dimensional fluid–structure interaction analysis of a flexible flapping wing under the simultaneous pitching and plunging motion

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Recent advance in flapping-wing MAVs has led to greater attention being paid to the interaction between the structural dynamics of the wing and its aerodynamics, both of which are closely related to the performance of a flapping wing. In this paper, an improved computational framework to simulate a flapping wing is developed. This framework is established by coupling a preconditioned Navier–Stokes solution and a co-rotational beam analysis with a restrained warping degree of freedom. Validation of the present framework is performed by a comparison with examples from either earlier analyses or experiments. Further, a numerical analysis of a wing under simultaneous pitching and plunging motion is examined. The results are compared with those obtained with a wing under pure plunging motion, in order to assess the additional motion effect within a spanwise flexible wing. The comparison shows different aerodynamic characteristics induced by the flexibility of the wing, which can be beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

\(\underline{\underline{R}}\) :

Rotational matrix

\(\underline{\underline{T}}_{s}\) :

Operator relating spatial and material angular variations

\(\underline{E}\) :

Topology of the configuration

\(\underline{x}\) :

Position vector

\(\underline{u}\) :

Nodal transverse displacement vector

\(l_{n}\) :

Deformed length of the element

\(\underline{\theta }\) :

Nodal rotational displacement vector

\(\alpha \) :

Warping degrees of freedom

\(\underline{\underline{B}}\) :

Transformation matrix

\(\underline{\underline{E}}\) :

CR transformation matrix

\(\underline{\underline{H}}\) :

Auxiliary matrix

\(\underline{q}\) :

Nodal displacement vector

\(\dot{\underline{q}}\) :

Nodal velocity vector

\(\ddot{\underline{q}}\) :

Nodal acceleration vector

V :

Virtual work

\(\varPhi \) :

Strain energy

\(\mathcal {K}\) :

Kinetic energy

\(\rho \) :

Material density

\(\underline{f}\) :

Elemental internal force vector

\(\underline{f}_{K}\) :

Elemental inertial force vector

\(\underline{f}_{e}\) :

Elemental external force vector

\(\underline{f}_{Km}\) :

Elemental inertial force vector with prescribed motion

\(\underline{F}_{\mathrm{pre}}\) :

Predictor

\(\underline{\underline{K}}\) :

Elemental stiffness matrix

\(\underline{\underline{M}}\) :

Elemental mass matrix

\(\underline{\underline{C}}_{K}\) :

Elemental gyroscopic matrix

\(\underline{\underline{K}}_{\mathrm{Dyn}}\) :

Elemental dynamic stiffness matrix

\((*)^{\alpha }\) :

Quantity including the warping DOF

\((*)_{\mathrm{G}}\) :

Quantity referring to the global frame

\((*)_{\mathrm{L}}\) :

Quantity referring to the local frame

\((*)^{\mathrm{n}}\) :

Time index

h :

Structural timestep

\(\alpha _{\mathrm{int}}, \gamma , \beta \) :

Constants in HHT-\(\alpha \) method

\(\underline{W}\) :

Conservative solution vector

\(\overrightarrow{\underline{F}}\) :

Inviscid flux vector

\(\overrightarrow{\underline{F}_{v}}\) :

Viscous flux vector

\(\underline{Q}_{p}\) :

Primitive solution vector

\(\underline{\underline{\varGamma }}_{a}\) :

Preconditioning matrix

\(C_{\mathrm{W}}\) :

Sectional warping coefficient

\(z_{\mathrm{tip}}\) :

Displacement at the tip

\(z_{m}\) :

Prescribed plunging motion

\(z_{o}\) :

Amplitude of plunging motion

\(\theta _{m}\) :

Prescribed pitching motion

\(\theta _{o}\) :

Amplitude of pitching motion

c :

Chord length

\(k_{G}\) :

Reduced frequency

\(f_{m}\) :

Physical frequency

\(U_{\infty }\) :

Flow velocity

\(C_{\mathrm{P}}\) :

Pressure coefficient

\(C_{\mathrm{L}}\) :

Lift coefficient

\(C_{\mathrm{T}}\) :

Thrust coefficient

References

  1. Ellington, C.P., Van Den Berg, C., Willmott, A.P., Thomas, A.L.R.: Leading-edge vortices in insect flight. Nature 384, 626–630 (1996)

    Article  Google Scholar 

  2. Anderson, J.M., Streitlin, K., Barrett, D.S., Triantafyllou, M.S.: Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 41–72 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Heathcote, S., Wang, Z., Gursul, I.: Effect of spanwise flexibility on flapping wing propulsion. J. Fluids Struct. 24(2), 183–199 (2008)

    Article  Google Scholar 

  4. Smith, M.J.C.: The effects of flexibility on the aerodynamics of moth wings: towards the development of flapping-wing technology. In: Proceedings of the 33rd aerospace sciences meeting and exhibit, Reno, Nevada

  5. Wills, D., Israeli, E., Persson, P., Drela, M., Peraire, J., Swartz, S.M., Breuer, K.S.: A computational framework for fluid structure interaction in biologically inspired flapping flight. In: Proceedings of the 25th AIAA applied aerodynamics conference, Miami, Florida, June (2007)

  6. Liani, E., Guo, S., Allegri, G.: Aeroelastic effect on flapping wing performance. In: Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC structures, Structural dynamics, and materials Conference, Honololu, Hawaii, April (2007)

  7. Hamamoto, M., Ohta, Y., Hara, K., Hisada, T.: Application of fluid-structure interaction analysis to flapping flight of insects with deformable wings. Adv. Robot. 21(1–2), 1–21 (2007)

    Article  Google Scholar 

  8. Zhu, Q.: Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA J. 45(10), 2448–2457 (2007)

    Article  Google Scholar 

  9. Chimakurthi, S., Tang, J., Palacios, R., Cesnik, C., Shyy, W.: Computational aeroelasticity framework for analyzing flapping wing micro air vehicles. AIAA J. 47(8), 1865–1878 (2009)

    Article  Google Scholar 

  10. Chimakurthi, S., Stanford, B.K., Cesnik, C., Shyy, W.: Flapping wing CFD/CSD aeroelastic formulation based on a corotational shell finite element, In: Proceedings of the 50th AIAA / ASME / ASCE / AHS / ASC structures, Structural dynamics, and materials conference, Palm Springs, CA (2009). Paper AIAA-2009-2412

  11. Gordnier, R., Demasi, L.: Implicit LES simulations of a flapping wing in forward flight. In: Proceedings of American society of mechanical engineers 2013 fluids engineering division summer meeting, Incline Village, NV (2013)

  12. Weiss, J., Smith, W.: Preconditioning applied to variable and constant density flows. AIAA J. 33(11), 2050–2057 (1995)

    Article  MATH  Google Scholar 

  13. Roe, P.: Approximate Riemann solvers, and difference schemes. J. Comput. Phys. 32, 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yoo, I., Lee, S.: Reynolds-averaged Navier-Stokes computations of synthetic jet flows using deforming meshes. AIAA J. 50(9), 1943–1955 (2012)

    Article  Google Scholar 

  15. Rankin, C.C., Brogan, A.: An element-independent co-rotational procedure for the treatment of large rotations. ASME J. Press. Vessel Technol. 108(2), 165–175 (1986)

    Article  Google Scholar 

  16. Nour-Omid, B., Rankin, C.C.: Finite rotation analysis and consistent linearization using projectors. Comput. Struct. 30(3), 257–267 (1988)

    MATH  Google Scholar 

  17. Felippa, C., Haugen, B.: A unified formulation of small-strain corotational finite elements: I. Theory. Comput. Methods Appl. Mech. Eng. 194(21–24), 2285–2335 (2005)

    Article  MATH  Google Scholar 

  18. Crisfield, M.: A consistent co-rotational formulation for non-linear three-dimensional beam-elements. Comput. Methods Appl. Mech. Eng. 81, 131–150 (1990)

    Article  MATH  Google Scholar 

  19. Pacoste, C., Eriksson, A.: Beam elements in instability problems. Comput. Methods Appl. Mech. Eng. 144, 1–2 (1997)

    Article  MATH  Google Scholar 

  20. Battini, J.M., Pacoste, C.: Co-rotational beam elements with warping effects in instability problems. Comput. Methods Appl. Mech. Eng. 191(17–18), 1755–1789 (2002)

    Article  MATH  Google Scholar 

  21. Crisfield, M., Galvanetto, U., Jelenić, G.: Dynamics of 3-D co-rotational beams. Comput. Mech. 20, 507–519 (1997)

    Article  MATH  Google Scholar 

  22. Iura, M., Atluri, S.N.: Dynamic analysis of planar flexible beams with finite rotations by using inertial and rotating frames. Comput. Struct. 55, 3 (1995)

    Article  MATH  Google Scholar 

  23. Masuda, N., Nishiwaki, T.: Nonlinear dynamic analysis of frame structures. Comput. Struct. 27, 1 (1987)

    Article  MATH  Google Scholar 

  24. Xue, Q., Meek, J.L.: Dynamic response and instability of frame structures. Comput. Methods Appl. Mech. Eng. 190, 5233–5242 (2001)

    Article  MATH  Google Scholar 

  25. Le, T.N., Battini, J.M., Hjiaj, M.: Corotational formulation for nonlinear dynamics of beams with arbitrary thin-walled open cross-sections. Comput. Struct. 134(1), 112–127 (2014)

    Article  Google Scholar 

  26. Crisfield, M.: A unified co-rotational for solids shells and beams. Int. J. Solids Struct. 33, 2969–2992 (1996)

    Article  MATH  Google Scholar 

  27. Crisfield, M.: Non-Linear Finite Element Analysis of Solids and Structures, Advanced Topics, vol. 2. Wiley, Chischester (1997)

    MATH  Google Scholar 

  28. Simo, J., Vu-Quoc, L.: A three-dimensional finite-strain rod model, part II computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79–116 (1986)

    Article  MATH  Google Scholar 

  29. Simo, J., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions-a geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gruttmann, F., Sauer, R., Wagner, W.: A geometrical nonlinear ecentric 3D-beam. Comput. Methods Appl. Mech. Eng. 160, 383–400 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Le, T.N., Battini, J.M., Hjiaj, M.: Dynamics of 3D beam elements in a corotational context: a comparative study of established and new formulations. Finite Elem. Anal. Des. 61, 97–111 (2012)

    Article  MathSciNet  Google Scholar 

  32. Le, T.N., Battini, J.M., Hjiaj, M.: A consistent 3D corotational beam element for nonlinear dynamic analysis of flexible structures. Comput. Methods Appl. Mech. Eng. 269(1), 538–565 (2014)

  33. Hilber, H.M., Hughes, T.J.R., Taylor, R.L.: Improved numerical dissipation for time integration algorithms. Earthq. Eng. Struct. Dyn. 5, 283–292 (1977)

    Article  Google Scholar 

  34. Subbaraj, K., Dokainish, M.: Survey of direct time-integration methods in computational structural dynamics II. Implicit methods. Comput. Struct. 32(6), 1387–1401 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  35. Hoogenboom, P.: Theory of Elasticity, Chapter 7. Vlasov Torsion Theory. University Lecture, Delft University of Technology (2006)

  36. Hizh, H., Kurtulus, D.F.: Numerical and experimental analysis of purely pitching and purely plunging airfoil in hover. In: Proceedings of the 5th International micro air vehicle conference and flight competition (2012)

Download references

Acknowledgments

This research was supported by a grant to Bio-Mimetic Robot Research Center funded by Defense Acquisition Program Administration (UD130070ID) and also be by Advanced Research Center Program (No. 2013073861) through the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) contracted through Next Generation Space Propulsion Research Center at Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Joon Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, H., Lee, N., Kwak, J.Y. et al. Three-dimensional fluid–structure interaction analysis of a flexible flapping wing under the simultaneous pitching and plunging motion. Nonlinear Dyn 86, 1951–1966 (2016). https://doi.org/10.1007/s11071-016-3007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3007-7

Keywords

Navigation