Skip to main content

Computational Analysis of a Three-dimensional Flapping Wing

  • Chapter
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics IX

Abstract

Unsteady Reynolds-averaged Navier-Stokes simulations are presented in which two-dimensional airfoil motion parameters have been extended to three-dimensional wing motion. The motion parameters have been redefined including induced angles of attack which have been identified using a panel method based on Prandtl’s wing theory. The numerical simulation approach includes a mesh deformation tool to perform the wing’s movement. The resulting thrust and propulsive efficiency on wing sections are compared to equivalent two-dimensional simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bansmer, S.: Strömungsanalyse an einem zwei- und dreidimensional schlagenden Flügelsegment. Dissertation, Technische Universität Braunschweig (2010). ISBN 978-3-832298-92-0

    Google Scholar 

  2. Neef, M.: Analyse des Schlagfluges durch numerische Strömungsberechnung. Dissertation, Technische Universität Braunschweig (2002). ISBN 978-3-928628-45-7

    Google Scholar 

  3. Windte, J., Radespiel, J.: Propulsive efficiency of a moving airfoil at transitional low reynolds numbers. AIAA J. 46(9), 2165–2177 (2008)

    Article  Google Scholar 

  4. Platzer, M.F., Jones, K.D., Young, J., Lai, J.C.S.: Flapping wing aerodynamics: progress and challenges. AIAA J. 46(9), 2136–2149 (2008)

    Article  Google Scholar 

  5. Isogai, K., Shinmoto, Y., Watanabe, Y.: Effects of dynamic stall on propulsive efficiency and thrust of flapping airfoil. AIAA J. 37(10), 1145–1151 (1999)

    Article  Google Scholar 

  6. Tuncer, I.H., Walz, R., Platzer, M.F.: A computational study on the dynamic stall of a flapping airfoil. AIAA Paper 98–2519, June 1998

    Google Scholar 

  7. Friedl, A., Kähler, C.J.: Shape and deformation measurement of naturally textured surfaces using optical flow, 17. DGLR / STAB Fach-Symposium zur Strmungsmechanik, Berlin, 9–10 November 2010

    Google Scholar 

  8. Kroll, N., Rossow, C.-C., Schwamborn, D.: The MEGAFLOW-project—numerical flow simulation for aircraft. In: Progress in Industrial Mathematics at ECMI 2004, pp. 81–125. Springer, Berlin (2005)

    Google Scholar 

  9. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  10. Gerhold, T., Neumann, J.: The Parallel Mesh Deformation of the DLR TAU-Code, New Results in Numerical and Experimental Fluid Mechanics VI, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 96, pp. 162–169. Springer, Berlin (2008)

    Google Scholar 

  11. Bansmer, S., Radespiel, R.: Flapping flight: high thrust and propulsive efficiency due to forward gliding oscillations. AIAA J. 50(12), 2937–2941 (2012)

    Article  Google Scholar 

  12. Laschka, B.: Zur Theorie der harmonisch schwingenden tragenden Fläche bei Unterschallanströmung. ZFW 11, 265–292 (1963)

    MATH  Google Scholar 

  13. Maskew, B.: A Computer Program for Calculation Nonlinear Aerodynamic Characteristics of Arbitrary Configurations, NASA Contractor Report 4023, Analytical Methods Inc. (1987)

    Google Scholar 

  14. Sivells, J.C., Neely, R.H.: Method For Calculating Wing Characteristics By Lifting-Line Theory Using Nonlinear Section Lift Data. National Advisory Committee For Aeronautics, 865 Langley Memorial Aeronautical Laboratory Langley Field (1947)

    Google Scholar 

  15. Deperrois, A.: Guidelines for XFLR5 v6.03, URL:https://engineering.purdue.edu/\(\sim \)aerodyn/AAE333/FALL11/Homeworks/HW10/xflr5-6.04-beta-win32/xflr5-6.04-beta-win32/Guidelines.pdf

    Google Scholar 

  16. Bansmer, S., Buchmann, N., Radespiel, R., Unger, R., Haupt, M., Horst, P., Heinrich, R.: Aerodynamics and Structural Mechanics of Flapping Flight with Elastic and Stiff Wings, Nature-Inspired Fluid Mechanics, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 119, pp. 331–354. Springer, Berlin (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadine Buchmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Buchmann, N., Radespiel, R., Heinrich, R. (2014). Computational Analysis of a Three-dimensional Flapping Wing. In: Dillmann, A., Heller, G., Krämer, E., Kreplin, HP., Nitsche, W., Rist, U. (eds) New Results in Numerical and Experimental Fluid Mechanics IX. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 124. Springer, Cham. https://doi.org/10.1007/978-3-319-03158-3_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03158-3_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03157-6

  • Online ISBN: 978-3-319-03158-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics