Skip to main content

Advertisement

Log in

Quantifying the impact of human activities on geological hazards in mountainous areas: evidence from Shennongjia, China

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

An increasing number of geological hazards threaten human life and property in mountainous areas, especially in China. Existing studies on the prevention of geological hazards mainly focus on natural factors and ignore the impact of human activities on geological hazards. This study aims to enrich our knowledge of the impact of human activities through a case study from the Shennongjia mountainous area, China. Spatial regression models were used to quantify the impact of different construction activities on geological hazards based on remote sensing images, local statistical data, land-use data and geological hazards distribution data. The Shennongjia case revealed the following: (1) The global Moran’s I index of the distribution of geological hazards was 0.35, which showed obvious spatial autocorrelation characteristics. (2) From the multiple model comparison, the spatial lag model was more suitable for quantifying the impact of human activities on geological hazards than the least squares regression model and the spatial error model. (3) Road construction and building construction were the main causes of geological hazards, whereas agricultural activities and mining activities had only a limited effect. The evidence reported here could enable governments to constrain human activities and to reduce the geological hazards in mountainous areas across China and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anbalagan R (1992) Landslide hazard evaluation and zonation mapping in mountainous terrain. Eng Geol 32:269–277. doi:10.1016/0013-7952(92)90053-2

    Article  Google Scholar 

  • Anselin L (1988) Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. Geograph Anal 20:1–17

    Article  Google Scholar 

  • Anselin L (1995) Local indicators of spatial association—LISA. Geograph Anal 27:93–115

    Article  Google Scholar 

  • Anselin L, Bongiovanni, Lowenberg D (2005) A spatial econometric approach to the economics of site-specific nitrogen management in corn production (86:675, 2004) Am J Agric Econ 87:261–261

  • Anselin L, Syabri I, Kho Y (2006) GeoDa: an introduction to spatial data analysis. Geograph Anal 38:5–22. doi:10.1111/j.0016-7363.2005.00671.x

    Article  Google Scholar 

  • Carrara A (1983) Multivariate models for landslide hazard evaluation. J Int As Math Geol 15:403–426. doi:10.1007/bf01031290

    Article  Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical-models in evaluating landslide hazard. Earth Surf Process Landf 16:427–445. doi:10.1002/esp.3290160505

    Article  Google Scholar 

  • Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Proc Land 28:527–545. doi:10.1002/esp.456

    Article  Google Scholar 

  • Danese M, Lazzari M, Murgante B (2008) Kernel density estimation methods for a geostatistical approach in seismic risk analysis: the case study of Potenza hilltop town (Southern Italy). In: Gervasi O, Murgante B (eds) Proceedings: computational science and its applications - Iccsa 2008, Pt 1, vol 5072

  • Dou J, Yamagishi H, Pourghasemi HR, Yunus AP, Song X, Xu Y, Zhu Z (2015) An integrated artificial neural network model for the landslide susceptibility assessment of Osado Island, Japan. Nat Hazards 78:1749–1776. doi:10.1007/s11069-015-1799-2

    Article  Google Scholar 

  • Parzen E (1962) On estimation of a probability density function and mode. Ann Math Stat 33(3):1065–1076

    Article  Google Scholar 

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study. Central Italy Geomorphol 31:181–216. doi:10.1016/s0169-555x(99)00078-1

    Google Scholar 

  • Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299. doi:10.1016/j.geomorph.2005.06.002

    Article  Google Scholar 

  • Hufschmidt G, Crozier M, Glade T (2005) Evolution of natural risk: research framework and perspectives. Nat Hazards Earth Syst Sci 5:375–387

    Article  Google Scholar 

  • Lazzari M, Geraldi E, Lapenna V, Loperte A (2006) Natural hazards vs human impact: an integrated methodological approach in geomorphological risk assessment on the Tursi historical site. South Italy Landslides 3:275–287. doi:10.1007/s10346-006-0055-y

    Article  Google Scholar 

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data journals. Int J Remote Sens 26:1477–1491. doi:10.1080/01431160412331331012

    Article  Google Scholar 

  • Mândrescu N (1984) Geological hazard evaluation in Romania. Eng Geol 20:39–47. doi:10.1016/0013-7952(84)90041-3

    Article  Google Scholar 

  • Maurizio L, Maria D (2012) A multi temporal kernel density estimation approach for new triggered landslides forecasting and susceptibility assessment. Disaster Adv 5:100–108

    Google Scholar 

  • Peng SH, Wang K (2015) Risk evaluation of geological hazards of mountainous tourist area: a case study of Mengshan. China Nat Hazards 78:517–529. doi:10.1007/s11069-015-1724-8

    Article  Google Scholar 

  • Remondo J, Soto JS, Gonzalez-Diez A, de Teran JRD, Cendrero A (2005) Human impact on geomorphic processes and hazards in mountain areas in northern Spain. Geomorphology 66:69–84. doi:10.1016/j.geomorph.2004.09.009

    Article  Google Scholar 

  • Rosenblatt M (1956) Remarks on some nonparametric estimates of a density function. Ann Math Stat 27(3):832–837

    Article  Google Scholar 

  • Shkupi D, Muco B (1998) Some problems of natural and man-made geohazards in Albania. In: Proceedings: eighth international congress international association for engineering geology and the environment, vols 1–5

  • Song J, Du S, Feng X, Guo L (2014) The relationships between landscape compositions and land surface temperature: quantifying their resolution sensitivity with spatial regression models. Landsc Urban Plan 123:145–157. doi:10.1016/j.landurbplan.2013.11.014

    Article  Google Scholar 

  • Tobler WR (1970) Computer Computer movie simulating urban growth in detroit region. Eco Geogr 46:234–240. doi:10.2307/143141

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. CATENA 72:1–12. doi:10.1016/j.catena.2007.01.003

    Article  Google Scholar 

  • Zhang L, Ma Z, Guo L (2009) An evaluation of spatial autocorrelation and heterogeneity in the residuals of six regression models. For Sci 55:533–548

    Google Scholar 

  • Zhang JJ, Yue DX, Wang YQ, Du J, Guo JJ, Ma JH, Meng XM (2012) Spatial pattern analysis of geohazards and human activities in Bailong River Basin. In: Iranpour R, Zhao J, Wang A, Yang FL, Li X (eds) Advances in environmental science and engineering, Pts 1–6, vol 518–523. Advanced Materials Research. pp 5822–5829. doi:10.4028/www.scientific.net/AMR.518-523.5822

  • Zhuang JQ, Peng JB, Zhu XH, Li W, Ma PH, Liu TM (2016) Spatial distribution and susceptibility zoning of geohazards along the Silk Road, Xian-Lanzhou. Environ Earth Sci 75:711. doi:10.1007/s12665-016-5428-5

    Article  Google Scholar 

Download references

Acknowledgements

The work presented in this paper was supported by National Science and Technology Support Project of China (No. 2014BAL05B07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingming Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, F., Zhan, Q. & Zhang, W. Quantifying the impact of human activities on geological hazards in mountainous areas: evidence from Shennongjia, China. Nat Hazards 90, 137–155 (2018). https://doi.org/10.1007/s11069-017-3039-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-017-3039-4

Keywords

Navigation