Skip to main content

Advertisement

Log in

Initiation and Transmission of α-Synuclein Pathology in Parkinson’s Disease

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The pathogenesis of Parkinson’s disease (PD) involves the accumulation of aggregated forms of α-synuclein in the body. The location for the initiation of misfolded forms of α-synuclein is now a contentious issue, what was once thought to be a disease of the central nervous system (CNS) now appears to involve multiple organs in the body. In particular, the two regions in the body where the nervous system is exposed to the environment, the olfactory bulb and the enteric nervous system, are now thought to play an important role in the initial phase of the disease. Epidemiological studies point to the gastrointestinal tract, including the appendix, as a potential site for the misfolding and transmission of α-synuclein, with the vagus nerve providing a conduit between the gut and brain. A growing body of animal studies also support this pathway, implicating the transmission of pathological α-synuclein from outside the CNS in the development of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Feigin VL (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet Neurol 16(11):877–897

    Google Scholar 

  2. Tysnes O-B, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm 124(8):901–905

    PubMed  Google Scholar 

  3. Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson's disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272

    PubMed  Google Scholar 

  4. Recasens A, Dehay B (2014) Alpha-synuclein spreading in Parkinson’s disease. Front Neuroanat 8:159

    PubMed  PubMed Central  Google Scholar 

  5. Recasens A et al (2014) Lewy body extracts from Parkinson disease brains trigger α-synuclein pathology and neurodegeneration in mice and monkeys. Ann Neurol 75(3):351–362

    CAS  PubMed  Google Scholar 

  6. Shahmoradian SH et al (2019) Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes. Nat Neurosci 22(7):1099–1109

    CAS  PubMed  Google Scholar 

  7. Braak H et al (2003) Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 24(2):197–211

    PubMed  Google Scholar 

  8. Pellicano C et al (2007) Prodromal non-motor symptoms of Parkinson's disease. Neuropsychiatr Dis Treat 3(1):145–152

    PubMed  PubMed Central  Google Scholar 

  9. Grey M et al (2011) Membrane Interaction of alpha-synuclein in different aggregation states. J Parkinsons Dis 1(4):359–371

    CAS  PubMed  Google Scholar 

  10. Cole NB et al (2008) Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidification. Exp Cell Res 314(10):2076–2089

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nerius M, Doblhammer G, Tamguney G (2019) GI infections are associated with an increased risk of Parkinson's disease. Gut. https://doi.org/10.1136/gutjnl-2019-318822

    Article  PubMed  Google Scholar 

  12. Lin JC et al (2016) Association between Parkinson's disease and inflammatory bowel disease: a nationwide Taiwanese retrospective cohort study. Inflamm Bowel Dis 22(5):1049–1055

    PubMed  Google Scholar 

  13. Villumsen M et al (2019) Inflammatory bowel disease increases the risk of Parkinson's disease: a Danish nationwide cohort study 1977–2014. Gut 68(1):18–24

    CAS  PubMed  Google Scholar 

  14. Weimers P et al (2019) Inflammatory bowel disease and Parkinson's disease: a nationwide swedish cohort study. Inflamm Bowel Dis 25(1):111–123

    PubMed  Google Scholar 

  15. Prusiner SB et al (1998) Prion protein biology. Cell 93(3):337–348

    CAS  PubMed  Google Scholar 

  16. Collinge J (2001) Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci 24:519–550

    CAS  PubMed  Google Scholar 

  17. Hafner Bratkovic I (2017) Prions, prionoid complexes and amyloids: the bad, the good and something in between. Swiss Med Wkly 147:w14424

    PubMed  Google Scholar 

  18. Brundin P, Ma JY, Kordower JH (2016) How strong is the evidence that Parkinson's disease is a prion disorder? Curr Opin Neurol 29(4):459–466

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Purro SA et al (2018) Transmission of amyloid-β protein pathology from cadaveric pituitary growth hormone. Nature 564(7736):415–419

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Giaccone G et al (2019) Iatrogenic early onset cerebral amyloid angiopathy 30 years after cerebral trauma with neurosurgery: vascular amyloid deposits are made up of both Aβ40 and Aβ42. Acta Neuropathol Commun 7(1):70–70

    PubMed  PubMed Central  Google Scholar 

  21. Acevedo-Morantes CY, Wille H (2014) The structure of human prions: from biology to structural models-considerations and pitfalls. Viruses 6(10):3875–3892

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Krammer C et al (2009) The yeast Sup35NM domain propagates as a prion in mammalian cells. Proc Natl Acad Sci USA 106(2):462–467

    CAS  PubMed  Google Scholar 

  23. Delenclos M et al (2017) Investigation of endocytic pathways for the internalization of exosome-associated oligomeric alpha-synuclein. Front Neurosci 11:172

    PubMed  PubMed Central  Google Scholar 

  24. Kim WS, Kagedal K, Halliday GM (2014) Alpha-synuclein biology in Lewy body diseases. Alzheimers Res Therapy 6(5):73

    Google Scholar 

  25. Theillet F-X et al (2016) Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature 530:45

    CAS  PubMed  Google Scholar 

  26. Ciechanover A, Kwon YT (2015) Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 47(3):e147–e147

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Collier TJ et al (2016) Is alpha-synuclein loss-of-function a contributor to Parkinsonian pathology? Evidence from non-human primates. Front NeuroSci 10:12–12

    PubMed  PubMed Central  Google Scholar 

  28. Aulić S et al (2014) Defined α-synuclein prion-like molecular assemblies spreading in cell culture. BMC Neurosci 15:69–69

    PubMed  PubMed Central  Google Scholar 

  29. Tarutani A et al (2018) Potent prion-like behaviors of pathogenic α-synuclein and evaluation of inactivation methods. Acta Neuropathol Commun 6(1):29

    PubMed  PubMed Central  Google Scholar 

  30. Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11(4):301–307

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hartmann A et al (2017) Exosomes and the prion protein: more than one truth. Front NeuroSci 11:194–194

    PubMed  PubMed Central  Google Scholar 

  32. Pezza JA, Serio TR (2007) Prion propagation the role of protein dynamics. Prion 1(1):36–43

    PubMed  PubMed Central  Google Scholar 

  33. Cheng L, Zhao WT, Hill AF (2018) Exosomes and their role in the intercellular trafficking of normal and disease associated prion proteins. Mol Aspects Med 60:62–68

    CAS  PubMed  Google Scholar 

  34. Merrick WC, Hershey JW (1996) The pathway and mechanism of eukaryotic protein synthesis. Cold Spring Harbor Monogr Arch 30:31–69

    CAS  Google Scholar 

  35. Hawkes CH, Del K, Tredici, Braak H (2007) Parkinson's disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol 33(6):599–614

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Makin S (2016) The prion principle. Nature 538(7626):S13–S16

    CAS  PubMed  Google Scholar 

  37. Rietdijk CD et al (2017) Exploring Braak's hypothesis of Parkinson's disease. Front Neurol 8:37

    PubMed  PubMed Central  Google Scholar 

  38. Kordower JH et al (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson's disease. Nat Med 14(5):504–506

    CAS  PubMed  Google Scholar 

  39. Li JY et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503

    CAS  PubMed  Google Scholar 

  40. Gao HM et al (2011) Neuroinflammation and alpha-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson's disease. Environ Health Perspect 119(6):807–814

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Luk KC et al (2009) Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc Natl Acad Sci 106(47):20051–20056

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ulusoy A et al (2017) Brain-to-stomach transfer of alpha-synuclein via vagal preganglionic projections. Acta Neuropathol 133(3):381–393

    CAS  PubMed  Google Scholar 

  43. Câmara R, Griessenauer CJ et al (2015) Chap. 27: anatomy of the vagus nerve. In: Tubbs RS et al (eds) Nerves and nerve injuries. Academic Press, San Diego, pp 385–397

    Google Scholar 

  44. Svensson E et al (2015) Vagotomy and subsequent risk of Parkinson's disease. Ann Neurol 78(4):522–529

    PubMed  Google Scholar 

  45. Liu BJ et al (2017) Vagotomy and Parkinson disease a Swedish register-based matched-cohort study. Neurology 88(21):1996–2002

    PubMed  PubMed Central  Google Scholar 

  46. Luk KC et al (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Holmqvist S et al (2014) Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 128(6):805–820

    PubMed  Google Scholar 

  48. Kim S et al (2019) Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron. https://doi.org/10.1016/j.neuron.2019.05.035

    Article  PubMed  PubMed Central  Google Scholar 

  49. Van Den Berge N et al (2019) Evidence for bidirectional and trans-synaptic parasympathetic and sympathetic propagation of alpha-synuclein in rats. Acta Neuropathol 138:535–550

    Google Scholar 

  50. Lohmann S et al (2019) Oral and intravenous transmission of alpha-synuclein fibrils to mice. Acta Neuropathol 138:515–533

    PubMed  PubMed Central  Google Scholar 

  51. Ellis H, Mahadevan V (2014) Anatomy of the caecum, appendix and colon. Surgery (Oxford) 32(4):155–158

    Google Scholar 

  52. Girard-Madoux MJH et al (2018) The immunological functions of the appendix: an example of redundancy? Semin Immunol 36:31–44

    CAS  PubMed  Google Scholar 

  53. Stokholm MG et al (2016) Pathological alpha-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann Neurol 79(6):940–949

    CAS  PubMed  Google Scholar 

  54. Killinger BA et al (2018) The vermiform appendix impacts the risk of developing Parkinson’s disease. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aar5280

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stojkovska I, Wagner BM, Morrison BE (2015) Parkinson's disease and enhanced inflammatory response. Exp Biol Med (Maywood, N.J.) 240(11):1387–1395

    CAS  Google Scholar 

  56. Chen X, Guo C, Kong J (2012) Oxidative stress in neurodegenerative diseases. Neural Regen Res 7(5):376–385

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Grey M et al (2015) Acceleration of α-synuclein aggregation by exosomes. J Biol Chem 290(5):2969–2982

    CAS  PubMed  Google Scholar 

  58. Khor B, Gardet A, Xavier RJ (2011) Genetics and pathogenesis of inflammatory bowel disease. Nature 474:307

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Duricova D et al (2014) Age-related differences in presentation and course of inflammatory bowel disease: an update on the population-based literature. J Crohns Colitis 8(11):1351–1361

    PubMed  Google Scholar 

  60. Head KA, Jurenka JS (2003) Inflammatory bowel disease Part 1: ulcerative colitis–pathophysiology and conventional and alternative treatment options. Altern Med Rev 8(3):247–283

    PubMed  Google Scholar 

  61. Head K, Jurenka JS (2004) Inflammatory bowel disease. Part II: Crohn's disease—pathophysiology and conventional and alternative treatment options. Altern Med Rev 9(4):360–401

    PubMed  Google Scholar 

  62. Weimers P et al (2019) Association between inflammatory bowel disease and Parkinson's disease: seek and you shall find? Gut 68(1):175–176

    PubMed  Google Scholar 

  63. Villumsen M et al (2018) Authors’ response: Association between IBD and Parkinson’s disease: seek and you shall find? Gut 68(9):1722

    PubMed  Google Scholar 

  64. Barrett JC et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease. Nat Genet 40(8):955–962

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Di Fonzo A et al (2006) Comprehensive analysis of the LRRK2 gene in sixty families with Parkinson's disease. Eur J Hum Genet 14(3):322–331

    PubMed  Google Scholar 

  66. Wallings R, Manzoni C, Bandopadhyay R (2015) Cellular processes associated with LRRK2 function and dysfunction. FEBS J 282(15):2806–2826

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu Z et al (2011) The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol 12(11):1063–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cook DA et al (2017) LRRK2 levels in immune cells are increased in Parkinson's disease. NPJ Parkinsons Dis 3:11

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Migheli R et al (2013) LRRK2 affects vesicle trafficking, neurotransmitter extracellular level and membrane receptor localization. PLoS ONE 8(10):e77198

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Russo I, Bubacco L, Greggio E (2014) LRRK2 and neuroinflammation: partners in crime in Parkinson's disease? J Neuroinflammation 11:52

    PubMed  PubMed Central  Google Scholar 

  71. Loureiro ACCF, Barbosa LER (2018) Appendectomy and Crohn's disease. J Coloproctol. https://doi.org/10.1016/j.jcol.2017.12.004

    Article  Google Scholar 

  72. Andersson RE et al (2003) Appendectomy is followed by increased risk of Crohn's disease. Gastroenterology 124(1):40–46

    PubMed  Google Scholar 

  73. Sahami S et al (2016) The link between the appendix and ulcerative colitis: clinical relevance and potential immunological mechanisms. Am J Gastroenterol 111(2):163–169

    CAS  PubMed  Google Scholar 

  74. Kaplan GG et al (2007) The risk of developing Crohn's disease after an appendectomy: a population-based cohort study in Sweden and Denmark. Gut 56(10):1387–1392

    PubMed  PubMed Central  Google Scholar 

  75. Radford-Smith GL et al (2002) Protective role of appendicectomy on onset and severity of ulcerative colitis and Crohn's disease. Gut 51(6):808–813

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kalaitzakis ME et al (2008) The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson's disease: a critical analysis of α-synuclein staging. Neuropathol Appl Neurobiol 34(3):284–295

    CAS  PubMed  Google Scholar 

  77. Burke RE, Dauer WT, Vonsattel JP (2008) A critical evaluation of the Braak staging scheme for Parkinson's disease. Ann Neurol 64(5):485–491

    PubMed  PubMed Central  Google Scholar 

  78. Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18(2):101–113

    CAS  PubMed  PubMed Central  Google Scholar 

  79. EL-AGNAF OMA et al (2003) α-Synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J 17(13):1945–1947

    CAS  PubMed  Google Scholar 

  80. Stuendl A et al (2016) Induction of alpha-synuclein aggregate formation by CSF exosomes from patients with Parkinson's disease and dementia with Lewy bodies. Brain 139:481–494

    PubMed  Google Scholar 

  81. Mathieu M et al (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21(1):9–17

    CAS  PubMed  Google Scholar 

  82. Abounit S et al (2016) Tunneling nanotubes spread fibrillar alpha-synuclein by intercellular trafficking of lysosomes. EMBO J 35(19):2120–2138

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Matsumoto A et al (2017) Role of Phosphatidylserine-Derived Negative Surface Charges in the Recognition and Uptake of Intravenously Injected B16BL6-Derived Exosomes by Macrophages. J Pharm Sci 106(1):168–175

    CAS  PubMed  Google Scholar 

  84. Aspelund A et al (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212(7):991–999

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Da Mesquita S et al (2018) Functional aspects of meningeal lymphatics in ageing and Alzheimer’s disease. Nature 560(7717):185–191

    PubMed  PubMed Central  Google Scholar 

  86. Ahn JH et al (2019) Meningeal lymphatic vessels at the skull base drain cerebrospinal fluid. Nature 572:62–66

    CAS  PubMed  Google Scholar 

  87. Braak H et al (2003) Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 110(5):517–536

    CAS  PubMed  Google Scholar 

  88. Brooks PL et al (2012) Reconciling Braak's model of Parkinson's disease with a prion-like spread of alpha synuclein pathology. Basal Ganglia 2(4):167–170

    Google Scholar 

  89. Schlicke CP (1963) Complications of vagotomy. Am J Surg 106(2):206–216

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason Howitt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazurskyy, A., Howitt, J. Initiation and Transmission of α-Synuclein Pathology in Parkinson’s Disease. Neurochem Res 44, 2685–2694 (2019). https://doi.org/10.1007/s11064-019-02896-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02896-0

Keywords

Navigation