Skip to main content

Advertisement

Log in

Parkinson disease and the gut: new insights into pathogenesis and clinical relevance

  • Review Article
  • Published:

From Nature Reviews Gastroenterology & Hepatology

View current issue Sign up to alerts

Abstract

The classic view portrays Parkinson disease (PD) as a motor disorder resulting from loss of substantia nigra pars compacta dopaminergic neurons. Multiple studies, however, describe prodromal, non-motor dysfunctions that affect the quality of life of patients who subsequently develop PD. These prodromal dysfunctions comprise a wide array of gastrointestinal motility disorders including dysphagia, delayed gastric emptying and chronic constipation. The histological hallmark of PD — misfolded α-synuclein aggregates that form Lewy bodies and neurites — is detected in the enteric nervous system prior to clinical diagnosis, suggesting that the gastrointestinal tract and its neural (vagal) connection to the central nervous system could have a major role in disease aetiology. This Review provides novel insights on the pathogenesis of PD, including gut-to-brain trafficking of α-synuclein as well as the newly discovered nigro–vagal pathway, and highlights how vagal connections from the gut could be the conduit by which ingested environmental pathogens enter the central nervous system and ultimately induce, or accelerate, PD progression. The pathogenic potential of various environmental neurotoxicants and the suitability and translational potential of experimental animal models of PD will be highlighted and appraised. Finally, the clinical manifestations of gastrointestinal involvement in PD and medications will be discussed briefly.

Key points

  • Gastrointestinal dysfunction, including dysphagia, delayed gastric emptying and constipation, can be detected up to 20 years prior to Parkinson disease (PD) diagnosis.

  • Lack of understanding of the mechanisms and pathophysiology hamper the diagnosis and clinical treatment of PD-related gastrointestinal dysfunction.

  • Both a ‘bottom-up’ and ‘top-down’ aetiology of PD have been proposed; experimental evidence suggests that these hypotheses are not mutually exclusive.

  • Experimental as well as clinical data suggest that PD is more a circuit-restricted than a cell-restricted disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Basal ganglia and brainstem connections in PD.
Fig. 2: Gut–brain connections and potential propagation of α-synuclein inclusions.

Similar content being viewed by others

References

  1. Goedert, M. NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349, 1255555 (2015).

    PubMed  Google Scholar 

  2. Cersosimo, M. G. & Benarroch, E. E. Neural control of the gastrointestinal tract: implications for Parkinson disease. Mov. Disord. 23, 1065–1075 (2008).

    PubMed  Google Scholar 

  3. Cersosimo, M. G. et al. Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J. Neurol. 260, 1332–1338 (2013).

    CAS  PubMed  Google Scholar 

  4. Goedert, M., Spillantini, M. G., Del, T. K. & Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24 (2013).

    CAS  PubMed  Google Scholar 

  5. Hunn, B. H., Cragg, S. J., Bolam, J. P., Spillantini, M. G. & Wade-Martins, R. Impaired intracellular trafficking defines early Parkinson’s disease. Trends Neurosci. 38, 178–188 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Braak, H. & Del, T. K. Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv. Anat. Embryol. Cell Biol. 201, 1–119 (2009).

    PubMed  Google Scholar 

  7. Herva, M. E. & Spillantini, M. G. Parkinson’s disease as a member of prion-like disorders. Virus Res. 207, 38–46 (2014).

    PubMed  Google Scholar 

  8. Malek, N. et al. Alpha-synuclein in peripheral tissues and body fluids as a biomarker for Parkinson’s disease — a systematic review. Acta Neurol. Scand. 130, 59–72 (2014).

    CAS  PubMed  Google Scholar 

  9. Del Tredici, K. & Braak, H. Review: sporadic Parkinson’s disease: development and distribution of alpha-synuclein pathology. Neuropathol. Appl. Neurobiol. 42, 33–50 (2016).

    PubMed  Google Scholar 

  10. Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    CAS  PubMed  Google Scholar 

  11. Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med. 14, 504–506 (2008).

    CAS  PubMed  Google Scholar 

  12. Hansen, C. et al. Alpha-synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 121, 715–725 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Angot, E. et al. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS ONE 7, e39465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Steiner, J. A., Quansah, E. & Brundin, P. The concept of alpha-synuclein as a prion-like protein: ten years after. Cell Tissue Res. 373, 161–173 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Borghammer, P. How does Parkinson’s disease begin? Perspectives on neuroanatomical pathways, prions, and histology. Mov. Disord. 33, 48–57 (2018).

    PubMed  Google Scholar 

  17. Brundin, P. & Melki, R. Prying into the prion hypothesis for Parkinson’s disease. J. Neurosci. 37, 9808–9818 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Surmeier, D. J., Obeso, J. A. & Halliday, G. M. Parkinson’s disease is not simply a prion disorder. J. Neurosci. 37, 9799–9807 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Volpicelli-Daley, L. A. et al. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fasano, A., Visanji, N. P., Liu, L. W., Lang, A. E. & Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson’s disease. Lancet Neurol. 14, 625–639 (2015).

    CAS  PubMed  Google Scholar 

  21. Cersosimo, M. G. & Benarroch, E. E. Central control of autonomic function and involvement in neurodegenerative disorders. Handb. Clin. Neurol. 117, 45–57 (2013).

    PubMed  Google Scholar 

  22. Jost, W. H. Gastrointestinal dysfunction in Parkinson’s disease. J. Neurol. Sci. 289, 69–73 (2010).

    CAS  PubMed  Google Scholar 

  23. Poewe, W. Non-motor symptoms in Parkinson’s disease. Eur. J. Neurol. 15 (Suppl. 1), 14–20 (2008).

    PubMed  Google Scholar 

  24. Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson’s disease. Curr. Treat. Options Neurol. 20, 54 (2018).

    PubMed  Google Scholar 

  25. Liddle, R. A. Parkinson’s disease from the gut. Brain Res. 1693, 201–206 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schapira, A. H. V., Chaudhuri, K. R. & Jenner, P. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18, 509 (2017).

    CAS  PubMed  Google Scholar 

  27. Abbott, R. D. et al. Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology 57, 456–462 (2001).

    CAS  PubMed  Google Scholar 

  28. Hilton, D. et al. Accumulation of alpha-synuclein in the bowel of patients in the pre-clinical phase of Parkinson’s disease. Acta Neuropathol. 127, 235–241 (2014).

    CAS  PubMed  Google Scholar 

  29. Iljina, M. et al. Kinetic model of the aggregation of alpha-synuclein provides insights into prion-like spreading. Proc. Natl Acad. Sci. USA 113, E1206–E1215 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cersosimo, M. G. & Benarroch, E. E. Pathological correlates of gastrointestinal dysfunction in Parkinson’s disease. Neurobiol. Dis. 46, 559–564 (2012).

    PubMed  Google Scholar 

  31. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).

    PubMed  Google Scholar 

  32. Hawkes, C. H., Del Tredici, K. & Braak, H. A timeline for Parkinson’s disease. Parkinsonism Relat. Disord. 16, 79–84 (2010).

    PubMed  Google Scholar 

  33. Klingelhoefer, L. & Reichmann, H. Pathogenesis of Parkinson disease — the gut–brain axis and environmental factors. Nat. Rev. Neurol. 11, 625–636 (2015).

    CAS  PubMed  Google Scholar 

  34. Bottner, M. et al. Expression pattern and localization of alpha-synuclein in the human enteric nervous system. Neurobiol. Dis. 48, 474–480 (2012).

    PubMed  Google Scholar 

  35. Shin, C. et al. Fundamental limit of alpha-synuclein pathology in gastrointestinal biopsy as a pathologic biomarker of Parkinson’s disease: comparison with surgical specimens. Parkinsonism Relat. Disord. 44, 73–78 (2017).

    PubMed  Google Scholar 

  36. Barrenschee, M. et al. Distinct pattern of enteric phospho-alpha-synuclein aggregates and gene expression profiles in patients with Parkinson’s disease. Acta Neuropathol. Commun. 5, 1 (2017).

    PubMed  PubMed Central  Google Scholar 

  37. Visanji, N. P., Brooks, P. L., Hazrati, L. N. & Lang, A. E. The prion hypothesis in Parkinson’s disease: Braak to the future. Acta Neuropathol. Commun. 1, 2 (2013).

    PubMed  PubMed Central  Google Scholar 

  38. Dunning, C. J., George, S. & Brundin, P. What’s to like about the prion-like hypothesis for the spreading of aggregated alpha-synuclein in Parkinson disease? Prion 7, 92–97 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Goedert, M., Clavaguera, F. & Tolnay, M. The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci. 33, 317–325 (2010).

    CAS  PubMed  Google Scholar 

  40. Olanow, C. W. & Brundin, P. Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov. Disord. 28, 31–40 (2013).

    CAS  PubMed  Google Scholar 

  41. Angot, E., Steiner, J. A., Hansen, C., Li, J. Y. & Brundin, P. Are synucleinopathies prion-like disorders? Lancet Neurol. 9, 1128–1138 (2010).

    PubMed  Google Scholar 

  42. Anselmi, L., Toti, L., Bove, C., Hampton, J. & Travagli, R. A. A nigro–vagal pathway controls gastric motility and is affected in a rat model of parkinsonism. Gastroenterology 153, 1581–1593 (2017).

    PubMed  Google Scholar 

  43. Anselmi, L. et al. Ingestion of subthreshold doses of environmental toxins induces ascending parkinsonism in the rat. Naturepj Parkinson’s Dis. 4, 30 (2018).

    CAS  Google Scholar 

  44. Svensson, E. et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann. Neurol 78, 522–529 (2015).

    PubMed  Google Scholar 

  45. Tysnes, O. B. et al. Does vagotomy reduce the risk of Parkinson’s disease? Ann. Neurol. 78, 1011–1012 (2015).

    PubMed  Google Scholar 

  46. Lionnet, A. et al. Does Parkinson’s disease start in the gut? Acta Neuropathol. 135, 1–12 (2018).

    PubMed  Google Scholar 

  47. Attems, J. & Jellinger, K. A. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson’s disease. Neuropathol. Appl. Neurobiol. 34, 466–467 (2008).

    CAS  PubMed  Google Scholar 

  48. Kalaitzakis, M. E., Graeber, M. B., Gentleman, S. M. & Pearce, R. K. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson’s disease: a critical analysis of alpha-synuclein staging. Neuropathol. Appl. Neurobiol. 34, 284–295 (2008).

    CAS  PubMed  Google Scholar 

  49. Ulusoy, A. et al. Brain-to-stomach transfer of alpha-synuclein via vagal preganglionic projections. Acta Neuropathol. 133, 381–393 (2017).

    CAS  PubMed  Google Scholar 

  50. Chandra, R., Hiniker, A., Kuo, Y. M., Nussbaum, R. L. & Liddle, R. A. α-Synuclein in gut endocrine cells and its implications for Parkinson’s disease. JCI Insight 2, e92295 (2017).

    PubMed Central  Google Scholar 

  51. Kim, S. et al. Transneuronal propagation of pathologic alpha-synuclein from the gut to the brain models Parkinson’s disease. Neuron 103, 627–641 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Holmqvist, S. et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 128, 805–820 (2014).

    PubMed  Google Scholar 

  53. McDowell, K. & Chesselet, M. F. Animal models of the non-motor features of Parkinson’s disease. Neurobiol. Dis. 46, 597–606 (2012).

    PubMed  PubMed Central  Google Scholar 

  54. Cannon, J. R. & Greenamyre, J. T. Neurotoxic in vivo models of Parkinson’s disease recent advances. Prog. Brain Res. 184, 17–33 (2010).

    CAS  PubMed  Google Scholar 

  55. Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. 3, 1301–1306 (2000).

    CAS  PubMed  Google Scholar 

  56. Drolet, R. E., Cannon, J. R., Montero, L. & Greenamyre, J. T. Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiol. Dis. 36, 96–102 (2009).

    CAS  PubMed  Google Scholar 

  57. Greene, J. G., Noorian, A. R. & Srinivasan, S. Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease. Exp. Neurol. 218, 154–161 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Tasselli, M. et al. Effects of oral administration of rotenone on gastrointestinal functions in mice. Neurogastroenterol. Motil. 25, e183–e193 (2013).

    CAS  PubMed  Google Scholar 

  59. Pan-Montojo, F. et al. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci. Rep. 2, 898 (2012).

    PubMed  PubMed Central  Google Scholar 

  60. Elbaz, A. et al. Professional exposure to pesticides and Parkinson disease. Ann. Neurol. 66, 494–504 (2009).

    PubMed  Google Scholar 

  61. Koller, W. C. Paraquat and Parkinson’s disease. Neurology 36, 1147 (1986).

    CAS  PubMed  Google Scholar 

  62. Liou, H. H. et al. Environmental risk factors and Parkinson’s disease: a case–control study in Taiwan. Neurology 48, 1583–1588 (1997).

    CAS  PubMed  Google Scholar 

  63. Betarbet, R., Sherer, T. B. & Greenamyre, J. T. Animal models of Parkinson’s disease. Bioessays 24, 308–318 (2002).

    CAS  PubMed  Google Scholar 

  64. Rudyk, C., Litteljohn, D., Syed, S., Dwyer, Z. & Hayley, S. Paraquat and psychological stressor interactions as pertains to parkinsonian co-morbidity. Neurobiol. Stress. 2, 85–93 (2015).

    PubMed  PubMed Central  Google Scholar 

  65. Naudet, N. et al. Oral exposure to paraquat triggers earlier expression of phosphorylated alpha-synuclein in the enteric nervous system of A53T mutant human alpha-synuclein transgenic mice. J. Neuropathol. Exp. Neurol. 76, 1046–1057 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Bove, C., Coleman, F. H. & Travagli, R. A. Characterization of the basic membrane properties of neurons of the rat dorsal motor nucleus of the vagus in paraquat-induced models of parkinsonism. Neuroscience 418, 122–132 (2019).

    CAS  PubMed  Google Scholar 

  67. Bove, C., Anselmi, L. & Travagli, R. A. Altered gastric tone and motility response to brainstem dopamine in a rat model of parkinsonism. Am. J. Physiol. Gastrointest. Liver Physiol 317, G1–G7 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Braak, H., Rub, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110, 517–536 (2003).

    CAS  PubMed  Google Scholar 

  69. Anderson, G. et al. Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Exp. Neurol. 207, 4–12 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Tian, Y. M. et al. Alteration of dopaminergic markers in gastrointestinal tract of different rodent models of Parkinson’s disease. Neuroscience 153, 634–644 (2008).

    CAS  PubMed  Google Scholar 

  71. Natale, G. et al. MPTP-induced parkinsonism extends to a subclass of TH-positive neurons in the gut. Brain Res. 1355, 195–206 (2010).

    CAS  PubMed  Google Scholar 

  72. Chaumette, T. et al. Neurochemical plasticity in the enteric nervous system of a primate animal model of experimental parkinsonism. Neurogastroenterol. Motil. 21, 215–222 (2009).

    CAS  PubMed  Google Scholar 

  73. Ungerstedt, U. 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5, 107–110 (1968).

    CAS  PubMed  Google Scholar 

  74. Blandini, F. et al. Functional and neurochemical changes of the gastrointestinal tract in a rodent model of Parkinson’s disease. Neurosci. Lett. 467, 203–207 (2009).

    CAS  PubMed  Google Scholar 

  75. Colucci, M. et al. Intestinal dysmotility and enteric neurochemical changes in a Parkinson’s disease rat model. Auton. Neurosci. 169, 77–86 (2012).

    CAS  PubMed  Google Scholar 

  76. Vegezzi, G. et al. Radiological analysis of gastrointestinal dysmotility in a model of central nervous dopaminergic degeneration: comparative study with conventional in vivo techniques in the rat. J. Pharmacol. Toxicol. Methods 70, 163–169 (2014).

    CAS  PubMed  Google Scholar 

  77. Karasawa, H. et al. New ghrelin agonist, HM01, alleviates constipation and l-dopa-delayed gastric emptying in 6-hydroxydopamine rat model of Parkinson’s disease. Neurogastroenterol. Motil. 26, 1771–1782 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Zheng, L. F. et al. Reduced expression of choline acetyltransferase in vagal motoneurons and gastric motor dysfunction in a 6-OHDA rat model of Parkinson’s disease. Brain Res. 1420, 59–67 (2011).

    CAS  PubMed  Google Scholar 

  79. Toti, L. & Travagli, R. A. Gastric dysregulation induced by microinjection of 6-OHDA in the substantia nigra pars compacta of rats is determined by alterations in the brain–gut axis. Am. J. Physiol. Gastrointest. Liver Physiol 307, G1013–G1023 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Garrido-Gil, P., Rodriguez-Perez, A. I., Dominguez-Meijide, A., Guerra, M. J. & Labandeira-Garcia, J. L. Bidirectional neural interaction between central dopaminergic and gut lesions in Parkinson’s disease models. Mol. Neurobiol. 55, 7297–7316 (2018).

    CAS  PubMed  Google Scholar 

  81. Levandis, G. et al. Response of colonic motility to dopaminergic stimulation is subverted in rats with nigrostriatal lesion: relevance to gastrointestinal dysfunctions in Parkinson’s disease. Neurogastroenterol. Motil. 27, 1783–1795 (2015).

    CAS  PubMed  Google Scholar 

  82. Pellegrini, C. et al. Alteration of colonic excitatory tachykininergic motility and enteric inflammation following dopaminergic nigrostriatal neurodegeneration. J. Neuroinflammation 13, 146 (2016).

    PubMed  PubMed Central  Google Scholar 

  83. Zheng, L. F. et al. The role of the vagal pathway and gastric dopamine in the gastroparesis of rats after a 6-hydroxydopamine microinjection in the substantia nigra. Acta Physiol. 211, 434–446 (2014).

    CAS  Google Scholar 

  84. Cannon, J. R. & Greenamyre, J. T. The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicol. Sci. 124, 225–250 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Hawkes, C. H., Del, T. K. & Braak, H. Parkinson’s disease: the dual hit theory revisited. Ann. NY Acad. Sci. 1170, 615–622 (2009).

    PubMed  Google Scholar 

  86. Schapira, A. H. & Tolosa, E. Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat. Rev. Neurol. 6, 309–317 (2010).

    CAS  PubMed  Google Scholar 

  87. Sulzer, D. & Surmeier, D. J. Neuronal vulnerability, pathogenesis, and Parkinson’s disease. Mov. Disord. 28, 715–724 (2013).

    PubMed  Google Scholar 

  88. Conway, K. A., Harper, J. D. & Lansbury, P. T. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318–1320 (1998).

    CAS  PubMed  Google Scholar 

  89. Kuo, Y. M. et al. Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated alpha-synuclein gene mutations precede central nervous system changes. Hum. Mol. Genet. 19, 1633–1650 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Noorian, A. R. et al. Alpha-synuclein transgenic mice display age-related slowing of gastrointestinal motility associated with transgene expression in the vagal system. Neurobiol. Dis. 48, 9–19 (2012).

    CAS  PubMed  Google Scholar 

  91. Rockenstein, E. et al. Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J. Neurosci. Res. 68, 568–578 (2002).

    CAS  PubMed  Google Scholar 

  92. Wang, L. et al. Mice overexpressing wild-type human alpha-synuclein display alterations in colonic myenteric ganglia and defecation. Neurogastroenterol. Motil. 24, e425–e436 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, L., Fleming, S. M., Chesselet, M. F. & Tache, Y. Abnormal colonic motility in mice overexpressing human wild-type alpha-synuclein. Neuroreport 19, 873–876 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hallett, P. J., McLean, J. R., Kartunen, A., Langston, J. W. & Isacson, O. Alpha-synuclein overexpressing transgenic mice show internal organ pathology and autonomic deficits. Neurobiol. Dis. 47, 258–267 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Manfredsson, F. P. et al. Induction of alpha-synuclein pathology in the enteric nervous system of the rat and non-human primate results in gastrointestinal dysmotility and transient CNS pathology. Neurobiol. Dis. 112, 106–118 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Travagli, R. A. & Anselmi, L. Vagal neurocircuitry and its influence on gastric motility. Nat. Rev. Gastroenterol. Hepatol. 13, 389–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Baintner, K., Jakab, G., Gyori, Z. & Kiss, P. Binding of FITC-labelled lectins to the gastrointestinal epithelium of the rat. Pathol. Oncol. Res. 6, 179–183 (2000).

    CAS  PubMed  Google Scholar 

  98. Hind, A. et al. Primary afferent neurons intrinsic to the guinea-pig intestine, like primary afferent neurons of spinal and cranial sensory ganglia, bind the lectin, IB4. Cell Tissue Res. 321, 151–157 (2005).

    PubMed  Google Scholar 

  99. Rudiger, H. & Gabius, H. J. Plant lectins: occurrence, biochemistry, functions and applications. Glycoconj. J. 18, 589–613 (2001).

    CAS  PubMed  Google Scholar 

  100. Trojanowski, J. Q., Gonatas, J. O. & Gonatas, N. K. A light and electron microscopic study of the intraneuronal transport of horseradish peroxidase and wheat germ agglutinin-peroxidase conjugates in the rat visual system. J. Neurocytol. 10, 441–456 (1981).

    CAS  PubMed  Google Scholar 

  101. Wan, X. C., Trojanowski, J. Q. & Gonatas, J. O. Cholera toxin and wheat germ agglutinin conjugates as neuroanatomical probes: their uptake and clearance, transganglionic and retrograde transport and sensitivity. Brain Res. 243, 215–224 (1982).

    CAS  PubMed  Google Scholar 

  102. Thacker, M., Zhang, F. L., Jungnickel, S. R. & Furness, J. B. Binding of isolectin IB4 to neurons of the mouse enteric nervous system. J. Mol. Histol. 37, 61–68 (2006).

    CAS  PubMed  Google Scholar 

  103. Mancheno, J. M., Tateno, H., Goldstein, I. J., Martinez-Ripoll, M. & Hermoso, J. A. Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars. J. Biol. Chem. 280, 17251–17259 (2005).

    CAS  PubMed  Google Scholar 

  104. Zheng, J. et al. Dietary plant lectins appear to Bbe transported from the gut to gain access to and alter dopaminergic neurons of Caenorhabditis elegans, a potential etiology of Parkinson’s disease. Front. Nutr. 3, 7 (2016).

    PubMed  PubMed Central  Google Scholar 

  105. Gajbhiye, V. & Gong, S. Lectin functionalized nanocarriers for gene delivery. Biotechnol. Adv. 31, 552–562 (2013).

    CAS  PubMed  Google Scholar 

  106. Lehr, C. M. & Gabor, F. Lectins and glycoconjugates in drug delivery and targeting. Adv. Drug Deliv. Rev. 56, 419–420 (2004).

    CAS  PubMed  Google Scholar 

  107. Lindberg, I. et al. Chaperones in neurodegeneration. J. Neurosci. 35, 13853–13859 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Takada, A. et al. Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J. Virol. 78, 2943–2947 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ho, S. C., Woo, J. & Lee, C. M. Epidemiologic study of Parkinson’s disease in Hong Kong. Neurology 39, 1314–1318 (1989).

    CAS  PubMed  Google Scholar 

  110. Scheider, W. L. et al. Dietary antioxidants and other dietary factors in the etiology of Parkinson’s disease. Mov. Disord. 12, 190–196 (1997).

    CAS  PubMed  Google Scholar 

  111. Ogawa, H. & Date, K. The “white kidney bean incident” in Japan. Methods Mol. Biol. 1200, 39–45 (2014).

    CAS  PubMed  Google Scholar 

  112. Rybner, C. et al. The cellular prion protein: a new partner of the lectin CBP70 in the nucleus of NB4 human promyelocytic leukemia cells. J. Cell Biochem. 84, 408–419 (2002).

    CAS  PubMed  Google Scholar 

  113. Kalf, J. G., de Swart, B. J., Borm, G. F., Bloem, B. R. & Munneke, M. Prevalence and definition of drooling in Parkinson’s disease: a systematic review. J. Neurol. 256, 1391–1396 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. van Wamelen, D. J. et al. Drooling in Parkinson’s disease: prevalence and progression from the non-motor international longitudinal study. Dysphagia https://doi.org/10.1007/s00455-020-10102-5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Beach, T. G. et al. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 119, 689–702 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Cersosimo, M. G. et al. Hyposialorrhea as an early manifestation of Parkinson disease. Auton. Neurosci. 150, 150–151 (2009).

    CAS  PubMed  Google Scholar 

  117. Perez Lloret, S. et al. Validation of a new scale for the evaluation of sialorrhea in patients with Parkinson’s disease. Mov. Disord. 22, 107–111 (2007).

    PubMed  Google Scholar 

  118. Sung, H. Y., Park, J. W. & Kim, J. S. The frequency and severity of gastrointestinal symptoms in patients with early Parkinson’s disease. J. Mov. Disord. 7, 7–12 (2014).

    PubMed  PubMed Central  Google Scholar 

  119. Ma, K. et al. Weight loss and malnutrition in patients with Parkinson’s disease: current knowledge and future prospects. Front. Aging Neurosci. https://doi.org/10.3389/fnagi.2018.00001 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Su, A., Gandhy, R., Barlow, C. & Triadafilopoulos, G. Clinical and manometric characteristics of patients with Parkinson’s disease and esophageal symptoms. Dis. Esophagus 30, 1–6 (2017).

    CAS  PubMed  Google Scholar 

  121. Jones, C. A. et al. Identification of swallowing disorders in early and mid-stage Parkinson’s disease using pattern recognition of pharyngeal high-resolution manometry data. Neurogastroenterol. Motil. 30, e13236 (2018).

    CAS  PubMed  Google Scholar 

  122. van Hooren, M. R., Baijens, L. W., Voskuilen, S., Oosterloo, M. & Kremer, B. Treatment effects for dysphagia in Parkinson’s disease: a systematic review. Parkinsonism Relat. Disord. 20, 800–807 (2014).

    PubMed  Google Scholar 

  123. Su, A., Gandhy, R., Barlow, C. & Triadafilopoulos, G. A practical review of gastrointestinal manifestations in Parkinson’s disease. Parkinsonism Relat. Disord. 39, 17–26 (2017).

    PubMed  Google Scholar 

  124. Evans, M. A. et al. Gastric emptying rate and the systemic availability of levodopa in the elderly parkinsonian patient. Neurology 31, 1288–1294 (1981).

    CAS  PubMed  Google Scholar 

  125. Arai, E. et al. Subthalamic deep brain stimulation can improve gastric emptying in Parkinson’s disease. Brain 135, 1478–1485 (2012).

    PubMed  Google Scholar 

  126. Vijayvargiya, P. et al. Effects of promotility agents on gastric emptying and symptoms: a systematic review and meta-analysis. Gastroenterology 156, 1650–1660 (2019).

    CAS  PubMed  Google Scholar 

  127. Knudsen, K., Szwebs, M., Hansen, A. K. & Borghammer, P. Gastric emptying in Parkinson’s disease — a mini-review. Parkinsonism Relat. Disord. 55, 18–25 (2018).

    PubMed  Google Scholar 

  128. Bestetti, A., Capozza, A., Lacerenza, M., Manfredi, L. & Mancini, F. Delayed gastric emptying in advanced Parkinson disease: correlation with therapeutic doses. Clin. Nucl. Med. 42, 83–87 (2017).

    PubMed  Google Scholar 

  129. Tarsy, D., Parkes, J. D. & Marsden, C. D. Metoclopramide and pimozide in Parkinson’s disease and levodopa-induced dyskinesias. J. Neurol. Neurosurg. Psychiatry 38, 331–335 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Simeonova, M. et al. Increased risk of all-cause mortality associated with domperidone use in Parkinson’s patients: a population-based cohort study in the UK. Br. J. Clin. Pharmacol. 84, 2551–2561 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Renoux, C. et al. Ventricular tachyarrhythmia and sudden cardiac death with domperidone use in Parkinson’s disease. Br. J. Clin. Pharmacol. 82, 461–472 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. De Pablo-Fernandez, E., Passananti, V., Zarate-Lopez, N., Emmanuel, A. & Warner, T. Colonic transit, high-resolution anorectal manometry and MRI defecography study of constipation in Parkinson’s disease. Parkinsonism Relat. Disord. 66, 195–201 (2019).

    PubMed  Google Scholar 

  133. Kupsky, W. J., Grimes, M. M., Sweeting, J., Bertsch, R. & Cote, L. J. Parkinson’s disease and megacolon: concentric hyaline inclusions (Lewy bodies) in enteric ganglion cells. Neurology 37, 1253–1255 (1987).

    CAS  PubMed  Google Scholar 

  134. Mathers, S. E. et al. Anal sphincter dysfunction in Parkinson’s disease. Arch. Neurol. 46, 1061–1064 (1989).

    CAS  PubMed  Google Scholar 

  135. Edwards, L. L., Quigley, E. M., Harned, R. K., Hofman, R. & Pfeiffer, R. F. Characterization of swallowing and defecation in Parkinson’s disease. Am. J. Gastroenterol. 89, 15–25 (1994).

    CAS  PubMed  Google Scholar 

  136. Nullens, S. et al. Regional colon transit in patients with dys-synergic defaecation or slow transit in patients with constipation. Gut 61, 1132–1139 (2012).

    PubMed  Google Scholar 

  137. Krogh, K., Ostergaard, K., Sabroe, S. & Laurberg, S. Clinical aspects of bowel symptoms in Parkinson’s disease. Acta Neurol. Scand. 117, 60–64 (2008).

    CAS  PubMed  Google Scholar 

  138. Singaram, C. et al. Dopaminergic defect of enteric nervous system in Parkinson’s disease patients with chronic constipation. Lancet 346, 861–864 (1995).

    CAS  PubMed  Google Scholar 

  139. Qualman, S. J., Haupt, H. M., Yang, P. & Hamilton, S. R. Esophageal Lewy bodies associated with ganglion cell loss in achalasia. Similarity to Parkinson’s disease. Gastroenterology 87, 848–856 (1984).

    CAS  PubMed  Google Scholar 

  140. Knudsen, K. et al. Gastrointestinal transit time in Parkinson’s disease using a magnetic tracking system. J. Parkinsons Dis. 7, 471–479 (2017).

    PubMed  Google Scholar 

  141. Knudsen, K., Krogh, K., Ostergaard, K. & Borghammer, P. Constipation in Parkinson’s disease: subjective symptoms, objective markers, and new perspectives. Mov. Disord. 32, 94–105 (2017).

    PubMed  Google Scholar 

  142. Lewitan, A., Nathanson, L. & Slade, W. R. Jr. Megacolon and dilatation of the small bowel in parkinsonism. Gastroenterology 17, 367–374 (1951).

    CAS  PubMed  Google Scholar 

  143. Berenyi, M. R. & Schwarz, G. S. Megasigmoid syndrome in diabetes and neurologic disease. Review of 13 cases. Am. J. Gastroenterol. 47, 311–320 (1967).

    CAS  PubMed  Google Scholar 

  144. Caplan, L. H., Jacobson, H. G., Rubinstein, B. M. & Rotman, M. Z. Megacolon and volvulus in Parkinson’s disease. Radiology 85, 73–79 (1965).

    CAS  PubMed  Google Scholar 

  145. Rosenthal, M. J. & Marshall, C. E. Sigmoid volvulus in association with parkinsonism. Report of four cases. J. Am. Geriatr. Soc. 35, 683–684 (1987).

    CAS  PubMed  Google Scholar 

  146. Giudicessi, J. R., Ackerman, M. J. & Camilleri, M. Cardiovascular safety of prokinetic agents: a focus on drug-induced arrhythmias. Neurogastroenterol. Motil. 30, e13302 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Stocchi, F. et al. Anorectal function in multiple system atrophy and Parkinson’s disease. Mov. Disord. 15, 71–76 (2000).

    CAS  PubMed  Google Scholar 

  148. Mukhtar, S., Imran, R., Zaheer, M. & Tariq, H. Frequency of non-motor symptoms in Parkinson’s disease presenting to tertiary care centre in Pakistan: an observational, cross-sectional study. BMJ Open 8, e019172 (2018).

    PubMed  PubMed Central  Google Scholar 

  149. Kim, J. S., Sung, H. Y., Lee, K. S., Kim, Y. I. & Kim, H. T. Anorectal dysfunctions in Parkinson’s disease. J. Neurol. Sci. 310, 144–151 (2011).

    PubMed  Google Scholar 

  150. Lubomski, M., Davis, R. L. & Sue, C. M. The gut microbiota: a novel therapeutic target in Parkinson’s disease? Parkinsonism Relat. Disord. 66, 265–266 (2019).

    PubMed  Google Scholar 

  151. Lubomski, M. et al. Parkinson’s disease and the gastrointestinal microbiome. J. Neurol. https://doi.org/10.1007/s00415-019-09320-1 (2019).

    Article  PubMed  Google Scholar 

  152. Maini Rekdal, V., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism. Science 364, eaau6323 (2019).

    PubMed  Google Scholar 

  153. Perez, M. et al. Tyramine biosynthesis is transcriptionally induced at low pH and improves the fitness of Enterococcus faecalis in acidic environments. Appl. Microbiol. Biotechnol. 99, 3547–3558 (2015).

    CAS  PubMed  Google Scholar 

  154. Dutta, S. K. et al. Parkinson’s disease: the emerging role of gut dysbiosis, antibiotics, probiotics, and fecal microbiota transplantation. J. Neurogastroenterol. Motil. 25, 363–376 (2019).

    PubMed  PubMed Central  Google Scholar 

  155. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Cirstea, M. S. et al. Microbiota composition and metabolism are associated with gut function in Parkinson’s disease. Mov. Disord. https://doi.org/10.1002/mds.28052 (2020).

    Article  PubMed  Google Scholar 

  157. Keshavarzian, A., Engen, P., Bonvegna, S. & Cilia, R. The gut microbiome in Parkinson’s disease: a culprit or a bystander? Prog. Brain Res. 252, 357–450 (2020).

    PubMed  Google Scholar 

  158. Weis, S. et al. Effect of Parkinson’s disease and related medications on the composition of the fecal bacterial microbiota. NPJ Parkinsons Dis. 5, 28 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Hill-Burns, E. M. et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov. Disord. 32, 739–749 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Robertson, D. R. et al. The influence of levodopa on gastric emptying in healthy elderly volunteers. Eur. J. Clin. Pharmacol. 42, 409–412 (1992).

    CAS  PubMed  Google Scholar 

  161. Waller, D. G., Roseveare, C., Renwick, A. G., Macklin, B. & George, C. F. Gastric emptying in healthy volunteers after multiple doses of levodopa. Br. J. Clin. Pharmacol. 32, 691–695 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Marrinan, S. L. et al. A randomized, double-blind, placebo-controlled trial of camicinal in Parkinson’s disease. Mov. Disord. 33, 329–332 (2018).

    CAS  PubMed  Google Scholar 

  163. Muller, T. et al. Impact of gastric emptying on levodopa pharmacokinetics in Parkinson disease patients. Clin. Neuropharmacol. 29, 61–67 (2006).

    PubMed  Google Scholar 

  164. Nyholm, D. & Lennernas, H. Irregular gastrointestinal drug absorption in Parkinson’s disease. Expert. Opin. Drug Metab. Toxicol. 4, 193–203 (2008).

    CAS  PubMed  Google Scholar 

  165. Perni, M. et al. Multistep inhibition of alpha-synuclein aggregation and toxicity in vitro and in vivo by trodusquemine. ACS Chem. Biol. 13, 2308–2319 (2018).

    CAS  PubMed  Google Scholar 

  166. Perni, M. et al. A natural product inhibits the initiation of alpha-synuclein aggregation and suppresses its toxicity. Proc. Natl Acad. Sci. USA 114, E1009–E1017 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Hauser, R. A. et al. Targeting neurons in the gastrointestinal tract to treat Parkinson’s disease. Clin. Parkinsonism Relat. Disord. 1, 2–7 (2019).

    Google Scholar 

  168. West, C. L. et al. Colonic motility and jejunal vagal afferent firing rates are decreased in aged adult male mice and can be restored by an aminosterol. Front. Neurosci. 13, 955 (2019).

    PubMed  PubMed Central  Google Scholar 

  169. Lee, C. R. & Tepper, J. M. Basal ganglia control of substantia nigra dopaminergic neurons. J. Neural Transm. Suppl. 73, 71–90 (2009).

    Google Scholar 

  170. Bove, C. & Travagli, R. A. Neurophysiology of the brain stem in Parkinson’s disease. J. Neurophysiol. 121, 1856–1864 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Rommelfanger, K. S. & Wichmann, T. Extrastriatal dopaminergic circuits of the basal ganglia. Front. Neuroanat. 4, 139 (2010).

    PubMed  PubMed Central  Google Scholar 

  172. Dickson, D. W. Neuropathology of Parkinson disease. Parkinsonism Relat. Disord. 46 (Suppl. 1), 30–33 (2018).

    Google Scholar 

  173. McGregor, M. M. & Nelson, A. B. Circuit mechanisms of Parkinson’s disease. Neuron 101, 1042–1056 (2019).

    CAS  PubMed  Google Scholar 

  174. Galvan, A., Devergnas, A. & Wichmann, T. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state. Front. Neuroanat. 9, 5 (2015).

    PubMed  PubMed Central  Google Scholar 

  175. Fereshtehnejad, S. M., Zeighami, Y., Dagher, A. & Postuma, R. B. Clinical criteria for subtyping Parkinson’s disease: biomarkers and longitudinal progression. Brain 140, 1959–1976 (2017).

    PubMed  Google Scholar 

  176. Browning, K. N., Renehan, W. E. & Travagli, R. A. Electrophysiological and morphological heterogeneity of rat dorsal vagal neurones which project to specific areas of the gastrointestinal tract. J. Physiol. 517, 521–532 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Browning, K. N., Coleman, F. H. & Travagli, R. A. Characterization of pancreas-projecting rat dorsal motor nucleus of vagus neurons. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G950–G955 (2005).

    CAS  PubMed  Google Scholar 

  178. Gao, H. et al. Morphological and electrophysiological features of motor neurons and putative interneurons in the dorsal vagal complex of rats and mice. Brain Res. 1291, 40–52 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Blake, C. B. & Smith, B. N. cAMP-dependent insulin modulation of synaptic inhibition in neurons of the dorsal motor nucleus of the vagus is altered in diabetic mice. Am. J. Physiol. Regul. Integr. Comp. Physiol 307, R711–R720 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Travagli, R. A., Gillis, R. A., Rossiter, C. D. & Vicini, S. Glutamate and GABA-mediated synaptic currents in neurons of the rat dorsal motor nucleus of the vagus. Am. J. Physiol. 260, G531–G536 (1991).

    CAS  PubMed  Google Scholar 

  181. Marks, J. D., Donnelly, D. F. & Haddad, G. G. Adenosine-induced inhibition of vagal motoneuron excitability: receptor subtype and mechanisms. Am. J. Physiol. 264, L124–L132 (1993).

    CAS  PubMed  Google Scholar 

  182. Travagli, R. A. & Gillis, R. A. Hyperpolarization-activated currents IH and IKIR in rat dorsal motor nucleus of the vagus neurons in vitro. J. Neurophysiol. 71, 1308–1317 (1994).

    CAS  PubMed  Google Scholar 

  183. Smith, B. N., Dou, P., Barber, W. D. & Dudek, F. E. Vagally evoked synaptic currents in the immature rat nucleus tractus solitarii in an intact in vitro preparation. J. Physiol. 512, 149–162 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Goldberg, J. A. et al. Calcium entry induces mitochondrial oxidant stress in vagal neurons at risk in Parkinson’s disease. Nat. Neurosci. 15, 1414–1421 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Ballanyi, K., Doutheil, J. & Brockhaus, J. Membrane potential and microenvironment of rat dorsal vagal cells in vitro during energy depletion. J. Physiol. 495, 769–784 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Kulik, A., Trapp, S. & Ballanyi, K. Ischemia but not anoxia evokes vascicular and Ca2+-independent glutamate release in the dorsal vagal complex in vitro. J. Neurophysiol. 83, 2905–2915 (2000).

    CAS  PubMed  Google Scholar 

  187. Trapp, S., Luekermann, M., Brooks, P. A. & Ballanyi, K. Acidosis of rat dorsal vagal neurons in situ during spontaneous and evoked activity. J. Physiol. 496, 695–710 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Dean, J. B., Gallman, E. A. & Millhorn, D. E. Electrophysiology and morphology of CO2-sensitive neurons in dorsal vagal complex studied in vitro. Soc. Neurosci. 507, 511 (1993).

    Google Scholar 

  189. Dean, J. B. & Mulkey, D. K. Continuous intracellular recording from mammalian neurons exposed to hyperbaric helium, oxygen or air. J. Appl. Physiol. 89, 807–822 (2000).

    CAS  PubMed  Google Scholar 

  190. Lasser-Katz, E. et al. Mutant alpha-synuclein overexpression induces stressless pacemaking in vagal motoneurons at risk in Parkinson’s disease. J. Neurosci. 37, 47–57 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Bauer, S., Hay, M., Amilhon, B., Jean, A. & Moyse, E. In vivo neurogenesis in the dorsal vagal complex of the adult rat brainstem. Neuroscience 130, 75–90 (2005).

    CAS  PubMed  Google Scholar 

  192. Charrier, C. et al. Characterization of neural stem cells in the dorsal vagal complex of adult rat by in vivo proliferation labeling and in vitro neurosphere assay. Neuroscience 138, 5–16 (2006).

    CAS  PubMed  Google Scholar 

  193. Gritti, A. et al. Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091–1100 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Subramaniam, M. et al. Mutant alpha-synuclein enhances firing frequencies in dopamine substantia nigra neurons by oxidative impairment of A-type potassium channels. J. Neurosci. 34, 13586–13599 (2014).

    PubMed  PubMed Central  Google Scholar 

  195. Zheng, Z. & Travagli, R. A. Dopamine effects on identified rat vagal motoneurons. Am. J. Physiol. Gastrointest. Liver Physiol 292, G1002–G1008 (2007).

    CAS  PubMed  Google Scholar 

  196. Wang, X., Pinol, R. A., Byrne, P. & Mendelowitz, D. Optogenetic stimulation of locus ceruleus neurons augments inhibitory transmission to parasympathetic cardiac vagal neurons via activation of brainstem alpha1 and beta1 receptors. J. Neurosci. 34, 6182–6189 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Coon, E. A., Cutsforth-Gregory, J. K. & Benarroch, E. E. Neuropathology of autonomic dysfunction in synucleinopathies. Mov. Disord. https://doi.org/10.1002/mds.27186 (2018).

    Article  PubMed  Google Scholar 

  198. Benarroch, E. E. The clinical approach to autonomic failure in neurological disorders. Nat. Rev. Neurol. 10, 396–407 (2014).

    PubMed  Google Scholar 

  199. Postuma, R. B. & Berg, D. Advances in markers of prodromal Parkinson disease. Nat. Rev. Neurol. 12, 622–634 (2016).

    CAS  PubMed  Google Scholar 

  200. Goldstein, D. S. Dysautonomia in Parkinson disease. Compr. Physiol. 4, 805–826 (2014).

    PubMed  PubMed Central  Google Scholar 

  201. Grinberg, L. T., Rueb, U., Alho, A. T. & Heinsen, H. Brainstem pathology and non-motor symptoms in PD. J. Neurol. Sci. 289, 81–88 (2010).

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the NIH (grants DK 55530 and DK 124098 to R.A.T., DK 111667 to K.N.B. and DK 115950 and 122280 to M.C.), the National Parkinson Foundation (R.A.T.), and the Michael J. Fox Foundation for Parkinson’s Disease (R.A.T.) for their support. The authors also thank C. M. Travagli, Z. Travagli and W. N. Browning for support and encouragement.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to R. Alberto Travagli.

Ethics declarations

Competing interests

M.C. serves as a member of Scientific Advisory Board of Enterin, a company that is developing a medication for Parkinson Disease. The other authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Gastroenterology & Hepatology thanks P. Derkinderen, M. Gershon and R. Liddle for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Travagli, R.A., Browning, K.N. & Camilleri, M. Parkinson disease and the gut: new insights into pathogenesis and clinical relevance. Nat Rev Gastroenterol Hepatol 17, 673–685 (2020). https://doi.org/10.1038/s41575-020-0339-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41575-020-0339-z

  • Springer Nature Limited

This article is cited by

Navigation