Skip to main content

Advertisement

Log in

Modification of Astrocyte Metabolism as an Approach to the Treatment of Epilepsy: Triheptanoin and Acetyl-l-Carnitine

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Epilepsy is a severe neurological disorder characterized by altered electrical activity in the brain. Important pathophysiological mechanisms include disturbed metabolism and homeostasis of major excitatory and inhibitory neurotransmitters, glutamate and GABA. Current drug treatments are largely aimed at decreasing neuronal excitability and thereby preventing the occurrence of seizures. However, many patients are refractory to treatment and side effects are frequent. Temporal lobe epilepsy (TLE) is the most common type of drug-resistant epilepsy in adults. In rodents, the pilocarpine-status epilepticus model reflects the pathology and chronic spontaneous seizures of TLE and the pentylenetetrazole kindling model exhibits chronic induced limbic seizures. Accumulating evidence from studies on TLE points to alterations in astrocytes and neurons as key metabolic changes. The present review describes interventions which alleviate these disturbances in astrocyte–neuronal interactions by supporting mitochondrial metabolism. The compounds discussed are the endogenous transport molecule acetyl-l-carnitine and the triglyceride of heptanoate, triheptanoin. Both provide acetyl moieties for oxidation in the tricarboxylic acid cycle whereas heptanoate is also provides propionyl-CoA, which after carboxylation can produce succinyl-CoA, resulting in anaplerosis—the refilling of the tricarboxylic acid cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

18FDG-PET:

18F-fluorodeoxyglucose positron emission tomography

GAD:

Glutamate decarboxylase

GLN:

Glutamine

GLU:

Glutamate

GS:

Glutamine synthetase

GVG:

γ-VinylGABA

α-KG:

α-Ketoglutarate

MRS:

Magnetic resonance spectroscopy

PC:

Pyruvate carboxylase

PDH:

Pyruvate dehydrogenase

SE:

Status epilepticus

TCA:

Tricarboxylic acid

TLE:

Temporal lobe epilepsy

PTZ:

Penetylenethetrazole

References

  1. Duncan JS, Sander JW, Sisodiya SM, Walker MC (2006) Adult epilepsy. Lancet 367(9516):1087–1100. doi:10.1016/S0140-6736(06)68477-8

    Article  PubMed  Google Scholar 

  2. Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D, Hesdorffer DC, Hauser WA, Kazis L, Kobau R, Kroner B, Labiner D, Liow K, Logroscino G, Medina MT, Newton CR, Parko K, Paschal A, Preux PM, Sander JW, Selassie A, Theodore W, Tomson T, Wiebe S (2011) Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia 52(Suppl 7):2–26. doi:10.1111/j.1528-1167.2011.03121.x

    Article  CAS  PubMed  Google Scholar 

  3. Giblin KA, Blumenfeld H (2010) Is epilepsy a preventable disorder? New evidence from animal models. Neuroscientist 16(3):253–275. doi:10.1177/1073858409354385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schmidt D, Loscher W (2005) Drug resistance in epilepsy: putative neurobiologic and clinical mechanisms. Epilepsia 46(6):858–877. doi:10.1111/j.1528-1167.2005.54904.x

    Article  CAS  PubMed  Google Scholar 

  5. Engel J Jr (2001) Mesial temporal lobe epilepsy: what have we learned? Neuroscientist 7(4):340–352

    Article  PubMed  Google Scholar 

  6. Ryvlin P, Cross JH, Rheims S (2014) Epilepsy surgery in children and adults. Lancet Neurol 13(11):1114–1126. doi:10.1016/S1474-4422(14)70156-5

    Article  PubMed  Google Scholar 

  7. Stafstrom CE, Rho JM (2010) Epilepsy and the ketogenic diet. Humana Press, New York

    Google Scholar 

  8. Freeman JM, Vining EP, Pillas DJ, Pyzik PL, Casey JC, Kelly LM (1998) The efficacy of the ketogenic diet-1998: a prospective evaluation of intervention in 150 children. Pediatrics 102(6):1358–1363

    Article  CAS  PubMed  Google Scholar 

  9. Buckmaster PS (2004) Laboratory animal models of temporal lobe epilepsy. Comp Med 54(5):473–485

    CAS  PubMed  Google Scholar 

  10. Hammer J, Alvestad S, Osen KK, Skare O, Sonnewald U, Ottersen OP (2008) Expression of glutamine synthetase and glutamate dehydrogenase in the latent phase and chronic phase in the kainate model of temporal lobe epilepsy. Glia 56(8):856–868. doi:10.1002/glia.20659

    Article  PubMed  Google Scholar 

  11. Andre V, Dube C, Francois J, Leroy C, Rigoulot MA, Roch C, Namer IJ, Nehlig A (2007) Pathogenesis and pharmacology of epilepsy in the lithium–pilocarpine model. Epilepsia 48(Suppl 5):41–47. doi:10.1111/j.1528-1167.2007.01288.x

    Article  CAS  PubMed  Google Scholar 

  12. Borges K, Gearing M, McDermott DL, Smith AB, Almonte AG, Wainer BH, Dingledine R (2003) Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp Neurol 182(1):21–34

    Article  CAS  PubMed  Google Scholar 

  13. Klitgaard H, Matagne A, Gobert J, Wulfert E (1998) Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur J Pharmacol 353(2–3):191–206

    Article  CAS  PubMed  Google Scholar 

  14. Meunier H, Carraz G, Neunier Y, Eymard P, Aimard M (1963) Pharmacodynamic properties of N-dipropylacetic acid. Therapie 18:435–438

    CAS  PubMed  Google Scholar 

  15. Klepper J (2008) Glucose transporter deficiency syndrome (GLUT1DS) and the ketogenic diet. Epilepsia 49(Suppl 8):46–49. doi:10.1111/j.1528-1167.2008.01833.x

    Article  PubMed  Google Scholar 

  16. Pascual JM, Liu P, Mao D, Kelly DI, Hernandez A, Sheng M, Good LB, Ma Q, Marin-Valencia I, Zhang X, Park JY, Hynan LS, Stavinoha P, Roe CR, Lu H (2014) Triheptanoin for glucose transporter type I deficiency (G1D): modulation of human ictogenesis, cerebral metabolic rate, and cognitive indices by a food supplement. JAMA Neurol 71(10):1255–1265. doi:10.1001/jamaneurol.2014.1584

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arnold S, Schlaug G, Niemann H, Ebner A, Luders H, Witte OW, Seitz RJ (1996) Topography of interictal glucose hypometabolism in unilateral mesiotemporal epilepsy. Neurology 46(5):1422–1430

    Article  CAS  PubMed  Google Scholar 

  18. Henry TR, Mazziotta JC, Engel J Jr (1993) Interictal metabolic anatomy of mesial temporal lobe epilepsy. Arch Neurol 50(6):582–589

    Article  CAS  PubMed  Google Scholar 

  19. Henry TR, Mazziotta JC, Engel J Jr, Christenson PD, Zhang JX, Phelps ME, Kuhl DE (1990) Quantifying interictal metabolic activity in human temporal lobe epilepsy. J Cereb Blood Flow Metab 10(5):748–757. doi:10.1038/jcbfm.1990.128

    Article  CAS  PubMed  Google Scholar 

  20. Dube C, Boyet S, Marescaux C, Nehlig A (2001) Relationship between neuronal loss and interictal glucose metabolism during the chronic phase of the lithium–pilocarpine model of epilepsy in the immature and adult rat. Exp Neurol 167(2):227–241. doi:10.1006/exnr.2000.7561

    Article  CAS  PubMed  Google Scholar 

  21. Melo TM, Nehlig A, Sonnewald U (2005) Metabolism is normal in astrocytes in chronically epileptic rats: a (13)C NMR study of neuronal–glial interactions in a model of temporal lobe epilepsy. J Cereb Blood Flow Metab 25(10):1254–1264. doi:10.1038/sj.jcbfm.9600128

    Article  PubMed  Google Scholar 

  22. Smeland OB, Hadera MG, McDonald TS, Sonnewald U, Borges K (2013) Brain mitochondrial metabolic dysfunction and glutamate level reduction in the pilocarpine model of temporal lobe epilepsy in mice. J Cereb Blood Flow Metab. doi:10.1038/jcbfm.2013.54

    PubMed  PubMed Central  Google Scholar 

  23. Smeland OB, Meisingset TW, Sonnewald U (2012) Dietary supplementation with acetyl-l-carnitine in seizure treatment of pentylenetetrazole kindled mice. Neurochem Int 61(4):444–454. doi:10.1016/j.neuint.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  24. Van Gelder NM, Sherwin AL, Rasmussen T (1972) Amino acid content of epileptogenic human brain: focal versus surrounding regions. Brain Res 40(2):385–393

    Article  PubMed  Google Scholar 

  25. Alvestad S, Hammer J, Eyjolfsson E, Qu H, Ottersen OP, Sonnewald U (2008) Limbic structures show altered glial–neuronal metabolism in the chronic phase of kainate induced epilepsy. Neurochem Res 33(2):257–266. doi:10.1007/s11064-007-9435-5

    Article  CAS  PubMed  Google Scholar 

  26. Kuzniecky R, Palmer C, Hugg J, Martin R, Sawrie S, Morawetz R, Faught E, Knowlton R (2001) Magnetic resonance spectroscopic imaging in temporal lobe epilepsy: neuronal dysfunction or cell loss? Arch Neurol 58(12):2048–2053

    Article  CAS  PubMed  Google Scholar 

  27. During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341(8861):1607–1610

    Article  CAS  PubMed  Google Scholar 

  28. Cavus I, Kasoff WS, Cassaday MP, Jacob R, Gueorguieva R, Sherwin RS, Krystal JH, Spencer DD, Abi-Saab WM (2005) Extracellular metabolites in the cortex and hippocampus of epileptic patients. Ann Neurol 57(2):226–235. doi:10.1002/ana.20380

    Article  CAS  PubMed  Google Scholar 

  29. Petroff OA, Errante LD, Rothman DL, Kim JH, Spencer DD (2002) Glutamate–glutamine cycling in the epileptic human hippocampus. Epilepsia 43(7):703–710

    Article  CAS  PubMed  Google Scholar 

  30. Meldrum BS, Akbar MT, Chapman AG (1999) Glutamate receptors and transporters in genetic and acquired models of epilepsy. Epilepsy Res 36(2–3):189–204

    Article  CAS  PubMed  Google Scholar 

  31. Eid T, Thomas MJ, Spencer DD, Runden-Pran E, Lai JC, Malthankar GV, Kim JH, Danbolt NC, Ottersen OP, de Lanerolle NC (2004) Loss of glutamine synthetase in the human epileptogenic hippocampus: possible mechanism for raised extracellular glutamate in mesial temporal lobe epilepsy. Lancet 363(9402):28–37

    Article  CAS  PubMed  Google Scholar 

  32. Bjornsen LP, Hadera MG, Zhou Y, Danbolt NC, Sonnewald U (2014) The GLT-1 (EAAT2; slc1a2) glutamate transporter is essential for glutamate homeostasis in the neocortex of the mouse. J Neurochem 128(5):641–649. doi:10.1111/jnc.12509

    Article  CAS  PubMed  Google Scholar 

  33. Bjornsen LP, Eid T, Holmseth S, Danbolt NC, Spencer DD, de Lanerolle NC (2007) Changes in glial glutamate transporters in human epileptogenic hippocampus: inadequate explanation for high extracellular glutamate during seizures. Neurobiol Dis 25(2):319–330. doi:10.1016/j.nbd.2006.09.014

    Article  CAS  PubMed  Google Scholar 

  34. Borges K, Sonnewald U (2012) Triheptanoin—a medium chain triglyceride with odd chain fatty acids: a new anaplerotic anticonvulsant treatment? Epilepsy Res 100(3):239–244. doi:10.1016/j.eplepsyres.2011.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Binder DK, Steinhauser C (2006) Functional changes in astroglial cells in epilepsy. Glia 54(5):358–368. doi:10.1002/glia.20394

    Article  PubMed  Google Scholar 

  36. Seifert G, Steinhauser C (2011) Neuron-astrocyte signaling and epilepsy. Exp Neurol. doi:10.1016/j.expneurol.2011.08.024

    PubMed  Google Scholar 

  37. Martinez-Hernandez A, Bell KP, Norenberg MD (1977) Glutamine synthetase: glial localization in brain. Science 195(4284):1356–1358

    Article  CAS  PubMed  Google Scholar 

  38. Tian GF, Azmi H, Takano T, Xu Q, Peng W, Lin J, Oberheim N, Lou N, Wang X, Zielke HR, Kang J, Nedergaard M (2005) An astrocytic basis of epilepsy. Nat Med 11(9):973–981. doi:10.1038/nm1277

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wetherington J, Serrano G, Dingledine R (2008) Astrocytes in the epileptic brain. Neuron 58(2):168–178. doi:10.1016/j.neuron.2008.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kornberg H (1966) Anaplerotic sequences and their role in metabolism. Essays Biochem 2:1–31

    Article  CAS  Google Scholar 

  41. Patel MS (1974) The relative significance of CO2-fixing enzymes in the metabolism of rat brain. J Neurochem 22(5):717–724

    Article  CAS  PubMed  Google Scholar 

  42. Sonnewald U, Rae C (2010) Pyruvate carboxylation in different model systems studied by (13)C MRS. Neurochem Res 35(12):1916–1921. doi:10.1007/s11064-010-0257-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nuutinen EM, Peuhkurinen KJ, Pietilainen EP, Hiltunen JK, Hassinen IE (1981) Elimination and replenishment of tricarboxylic acid-cycle intermediates in myocardium. Biochem J 194(3):867–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martini WZ, Stanley WC, Huang H, Rosiers CD, Hoppel CL, Brunengraber H (2003) Quantitative assessment of anaplerosis from propionate in pig heart in vivo. Am J Physiol Endocrinol Metab 284(2):E351–E356. doi:10.1152/ajpendo.00354.2002

    Article  CAS  PubMed  Google Scholar 

  45. Reszko AE, Kasumov T, Pierce BA, David F, Hoppel CL, Stanley WC, Des Rosiers C, Brunengraber H (2003) Assessing the reversibility of the anaplerotic reactions of the propionyl-CoA pathway in heart and liver. J Biol Chem 278(37):34959–34965. doi:10.1074/jbc.M302013200

    Article  CAS  PubMed  Google Scholar 

  46. Owen OE, Kalhan SC, Hanson RW (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem 277(34):30409–30412. doi:10.1074/jbc.R200006200

    Article  CAS  PubMed  Google Scholar 

  47. Neal EG, Chaffe H, Schwartz RH, Lawson MS, Edwards N, Fitzsimmons G, Whitney A, Cross JH (2008) The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol 7(6):500–506. doi:10.1016/S1474-4422(08)70092-9

    Article  PubMed  Google Scholar 

  48. Mochel F, DeLonlay P, Touati G, Brunengraber H, Kinman RP, Rabier D, Roe CR, Saudubray JM (2005) Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy. Mol Genet Metab 84(4):305–312. doi:10.1016/j.ymgme.2004.09.007

    Article  CAS  PubMed  Google Scholar 

  49. Roe CR, Bottiglieri T, Wallace M, Arning E, Martin A (2010) Adult polyglucosan body disease (APBD): anaplerotic diet therapy (Triheptanoin) and demonstration of defective methylation pathways. Mol Genet Metab 101(2–3):246–252. doi:10.1016/j.ymgme.2010.06.017

    Article  CAS  PubMed  Google Scholar 

  50. Papamandjaris AA, MacDougall DE, Jones PJ (1998) Medium chain fatty acid metabolism and energy expenditure: obesity treatment implications. Life Sci 62(14):1203–1215

    Article  CAS  PubMed  Google Scholar 

  51. Kinman RP, Kasumov T, Jobbins KA, Thomas KR, Adams JE, Brunengraber LN, Kutz G, Brewer WU, Roe CR, Brunengraber H (2006) Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. Am J Physiol Endocrinol Metab 291(4):E860–E866

    Article  CAS  PubMed  Google Scholar 

  52. Gu L, Zhang GF, Kombu RS, Allen F, Kutz G, Brewer WU, Roe CR, Brunengraber H (2010) Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. II. Effects on lipolysis, glucose production, and liver acyl-CoA profile. Am J Physiol Endocrinol Metab 298(2):E362–E371. doi:10.1152/ajpendo.00384.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marin-Valencia I, Good LB, Ma Q, Malloy CR, Pascual JM (2013) Heptanoate as a neural fuel: energetic and neurotransmitter precursors in normal and glucose transporter I-deficient (G1D) brain. J Cereb Blood Flow Metab 33(2):175–182. doi:10.1038/jcbfm.2012.151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roe CR, Mochel F (2006) Anaplerotic diet therapy in inherited metabolic disease: therapeutic potential. J Inherit Metab Dis 29(2–3):332–340. doi:10.1007/s10545-006-0290-3

    Article  CAS  PubMed  Google Scholar 

  55. Willis S, Stoll J, Sweetman L, Borges K (2010) Anticonvulsant effects of a triheptanoin diet in two mouse chronic seizure models. Neurobiol Dis 40(3):565–572. doi:10.1016/j.nbd.2010.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Thomas NK, Willis S, Sweetman L, Borges K (2012) Triheptanoin in acute mouse seizure models. Epilepsy Res 99(3):312–317. doi:10.1016/j.eplepsyres.2011.12.013

    Article  CAS  PubMed  Google Scholar 

  57. McDonald TS, Tan KN, Hodson MP, Borges K (2014) Alterations of hippocampal glucose metabolism by even versus uneven medium chain triglycerides. J Cereb Blood Flow Metab 34(1):153–160. doi:10.1038/jcbfm.2013.184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim TH, Borges K, Petrou S, Reid CA (2013) Triheptanoin reduces seizure susceptibility in a syndrome-specific mouse model of generalized epilepsy. Epilepsy Res 103(1):101–105. doi:10.1016/j.eplepsyres.2012.09.016

    Article  CAS  PubMed  Google Scholar 

  59. de Almeida Rabello Oliveira M, da Rocha Ataide T, de Oliveira SL, de Melo Lucena AL, de Lira CE, Soares AA, de Almeida CB, Ximenes-da-Silva A (2008) Effects of short-term and long-term treatment with medium- and long-chain triglycerides ketogenic diet on cortical spreading depression in young rats. Neurosci Lett 434(1):66–70. doi:10.1016/j.neulet.2008.01.032

    Article  PubMed  Google Scholar 

  60. Adanyeguh IM, Rinaldi D, Henry PG, Caillet S, Valabregue R, Durr A, Mochel F (2015) Triheptanoin improves brain energy metabolism in patients with Huntington disease. Neurology 84(5):490–495. doi:10.1212/WNL.0000000000001214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mochel F, Duteil S, Marelli C, Jauffret C, Barles A, Holm J, Sweetman L, Benoist JF, Rabier D, Carlier PG, Durr A (2010) Dietary anaplerotic therapy improves peripheral tissue energy metabolism in patients with Huntington’s disease. Eur J Hum Genet 18(9):1057–1060. doi:10.1038/ejhg.2010.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hadera MG, Smeland OB, McDonald TS, Tan KN, Sonnewald U, Borges K (2014) Triheptanoin partially restores levels of tricarboxylic acid cycle intermediates in the mouse pilocarpine model of epilepsy. J Neurochem 129(1):107–119. doi:10.1111/jnc.12610

    Article  CAS  PubMed  Google Scholar 

  63. Benson MJ, Manzanero S, Borges K (2015) Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia 56(6):895–905. doi:10.1111/epi.12960

    Article  CAS  PubMed  Google Scholar 

  64. Parnetti L, Gaiti A, Mecocci P, Cadini D, Senin U (1992) Pharmacokinetics of IV and oral acetyl-l-carnitine in a multiple dose regimen in patients with senile dementia of Alzheimer type. Eur J Clin Pharmacol 42(1):89–93

    Article  CAS  PubMed  Google Scholar 

  65. Kido Y, Tamai I, Ohnari A, Sai Y, Kagami T, Nezu J, Nikaido H, Hashimoto N, Asano M, Tsuji A (2001) Functional relevance of carnitine transporter OCTN2 to brain distribution of l-carnitine and acetyl-l-carnitine across the blood–brain barrier. J Neurochem 79(5):959–969

    Article  CAS  PubMed  Google Scholar 

  66. Januszewicz E, Bekisz M, Mozrzymas JW, Nalecz KA (2010) High affinity carnitine transporters from OCTN family in neural cells. Neurochem Res 35(5):743–748. doi:10.1007/s11064-010-0131-5

    Article  CAS  PubMed  Google Scholar 

  67. Januszewicz E, Pajak B, Gajkowska B, Samluk L, Djavadian RL, Hinton BT, Nalecz KA (2009) Organic cation/carnitine transporter OCTN3 is present in astrocytes and is up-regulated by peroxisome proliferators-activator receptor agonist. Int J Biochem Cell Biol 41(12):2599–2609. doi:10.1016/j.biocel.2009.08.020

    Article  CAS  PubMed  Google Scholar 

  68. Malaguarnera M (2012) Carnitine derivatives: clinical usefulness. Curr Opin Gastroenterol 28(2):166–176. doi:10.1097/MOG.0b013e3283505a3b

    Article  CAS  PubMed  Google Scholar 

  69. Bartlett K, Eaton S (2004) Mitochondrial beta-oxidation. Eur J Biochem 271(3):462–469

    Article  CAS  PubMed  Google Scholar 

  70. Fritz IB (1959) Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol 197:297–304

    CAS  PubMed  Google Scholar 

  71. Jones LL, McDonald DA, Borum PR (2010) Acylcarnitines: role in brain. Prog Lipid Res 49(1):61–75. doi:10.1016/j.plipres.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  72. Scafidi S, Fiskum G, Lindauer SL, Bamford P, Shi D, Hopkins I, McKenna MC (2010) Metabolism of acetyl-l-carnitine for energy and neurotransmitter synthesis in the immature rat brain. J Neurochem 114(3):820–831. doi:10.1111/j.1471-4159.2010.06807.x

    Article  CAS  PubMed  Google Scholar 

  73. Yu Z, Iryo Y, Matsuoka M, Igisu H, Ikeda M (1997) Suppression of pentylenetetrazol-induced seizures by carnitine in mice. Naunyn Schmiedebergs Arch Pharmacol 355(4):545–549

    Article  CAS  PubMed  Google Scholar 

  74. Aureli T, Miccheli A, Ricciolini R, Di Cocco ME, Ramacci MT, Angelucci L, Ghirardi O, Conti F (1990) Aging brain: effect of acetyl-l-carnitine treatment on rat brain energy and phospholipid metabolism. A study by 31P and 1H NMR spectroscopy. Brain Res 526(1):108–112

    Article  CAS  PubMed  Google Scholar 

  75. Aureli T, Di Cocco ME, Puccetti C, Ricciolini R, Scalibastri M, Miccheli A, Manetti C, Conti F (1998) Acetyl-l-carnitine modulates glucose metabolism and stimulates glycogen synthesis in rat brain. Brain Res 796(1–2):75–81

    Article  CAS  PubMed  Google Scholar 

  76. Scafidi S, Racz J, Hazelton J, McKenna MC, Fiskum G (2010) Neuroprotection by acetyl-l-carnitine after traumatic injury to the immature rat brain. Dev Neurosci 32(5–6):480–487. doi:10.1159/000323178

    CAS  PubMed  Google Scholar 

  77. Smeland OB, Meisingset TW, Borges K, Sonnewald U (2012) Chronic acetyl-l-carnitine alters brain energy metabolism and increases noradrenaline and serotonin content in healthy mice. Neurochem Int 61(1):100–107. doi:10.1016/j.neuint.2012.04.008

    Article  CAS  PubMed  Google Scholar 

  78. Waagepetersen HS, Sonnewald U, Qu H, Schousboe A (1999) Mitochondrial compartmentation at the cellular level: astrocytes and neurons. Ann N Y Acad Sci 893:421–425

    Article  CAS  PubMed  Google Scholar 

  79. Silva-Adaya D, Perez-De La Cruz V, Herrera-Mundo MN, Mendoza-Macedo K, Villeda-Hernandez J, Binienda Z, Ali SF, Santamaria A (2008) Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain: antioxidant and neuroprotective effects of l-carnitine. J Neurochem 105(3):677–689. doi:10.1111/j.1471-4159.2007.05174.x

    Article  CAS  PubMed  Google Scholar 

  80. Gülçin I (2006) Antioxidant and antiradical activities of l-carnitine. Life Sci 78(8):803–811. doi:10.1016/j.lfs.2005.05.103

    Article  PubMed  Google Scholar 

  81. Hansen SL, Nielsen AH, Knudsen KE, Artmann A, Petersen G, Kristiansen U, Hansen SH, Hansen HS (2009) Ketogenic diet is antiepileptogenic in pentylenetetrazole kindled mice and decrease levels of N-acylethanolamines in hippocampus. Neurochem Int 54(3–4):199–204. doi:10.1016/j.neuint.2008.10.012

    Article  CAS  PubMed  Google Scholar 

  82. Brass EP, Hoppel CL (1978) Carnitine metabolism in the fasting rat. J Biol Chem 253(8):2688–2693

    CAS  PubMed  Google Scholar 

  83. Hack A, Busch V, Pascher B, Busch R, Bieger I, Gempel K, Baumeister FA (2006) Monitoring of ketogenic diet for carnitine metabolites by subcutaneous microdialysis. Pediatr Res 60(1):93–96. doi:10.1203/01.pdr.0000219479.95410.79

    Article  CAS  PubMed  Google Scholar 

  84. Roe CR, Sweetman L, Roe DS, David F, Brunengraber H (2002) Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride. J Clin Invest 110(2):259–269. doi:10.1172/JCI15311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Aso E, Semakova J, Joda L, Semak V, Halbaut L, Calpena A, Escolano C, Perales JC, Ferrer I (2013) Triheptanoin supplementation to ketogenic diet curbs cognitive impairment in APP/PS1 mice used as a model of familial Alzheimer’s disease. Curr Alzheimer Res 10(3):290–297

    Article  CAS  PubMed  Google Scholar 

  86. Wang SM, Han C, Lee SJ, Patkar AA, Masand PS, Pae CU (2014) A review of current evidence for acetyl-l-carnitine in the treatment of depression. J Psychiatr Res 53:30–37. doi:10.1016/j.jpsychires.2014.02.005

    Article  PubMed  Google Scholar 

  87. Nasca C, Xenos D, Barone Y, Caruso A, Scaccianoce S, Matrisciano F, Battaglia G, Mathe AA, Pittaluga A, Lionetto L, Simmaco M, Nicoletti F (2013) l-Acetylcarnitine causes rapid antidepressant effects through the epigenetic induction of mGlu2 receptors. Proc Natl Acad Sci USA 110(12):4804–4809. doi:10.1073/pnas.1216100110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Al-Majed AA, Sayed-Ahmed MM, Al-Omar FA, Al-Yahya AA, Aleisa AM, Al-Shabanah OA (2006) Carnitine esters prevent oxidative stress damage and energy depletion following transient forebrain ischaemia in the rat hippocampus. Clin Exp Pharmacol Physiol 33(8):725–733. doi:10.1111/j.1440-1681.2006.04425.x

    Article  CAS  PubMed  Google Scholar 

  89. Schulz UG, Blamire AM, Corkill RG, Davies P, Styles P, Rothwell PM (2007) Association between cortical metabolite levels and clinical manifestations of migrainous aura: an MR-spectroscopy study. Brain 130(Pt 12):3102–3110. doi:10.1093/brain/awm165

    Article  CAS  PubMed  Google Scholar 

  90. Hagen K, Brenner E, Linde M, Gravdahl GB, Tronvik EA, Engstrom M, Sonnewald U, Helde G, Stovner LJ, Sand T (2015) Acetyl-l-carnitine versus placebo for migraine prophylaxis: a randomized, triple-blind, crossover study. Cephalalgia. doi:10.1177/0333102414566817

    Google Scholar 

  91. Pettegrew JW, Levine J, McClure RJ (2000) Acetyl-l-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer’s disease and geriatric depression. Mol Psychiatry 5(6):616–632

    Article  CAS  PubMed  Google Scholar 

  92. Hudson S, Tabet N (2003) Acetyl-l-carnitine for dementia. Cochrane Database Syst Rev. doi:10.1002/14651858.CD003158

    PubMed  Google Scholar 

  93. Kelley BJ, Knopman DS (2008) Alternative medicine and Alzheimer disease. Neurologist 14(5):299–306. doi:10.1097/NRL.0b013e318172cf4d

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Sonnewald.

Ethics declarations

Conflict of interest

KB has applied for a US patent for the use of triheptanoin in seizure disorders.

Additional information

Special Issue: 40th Year of Neurochemical Research.

Olav B. Smeland and Tore W. Meisingset have contributed equally to this work.

Borges’ and Sonnewald’s labs have contributed equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadera, M.G., McDonald, T., Smeland, O.B. et al. Modification of Astrocyte Metabolism as an Approach to the Treatment of Epilepsy: Triheptanoin and Acetyl-l-Carnitine. Neurochem Res 41, 86–95 (2016). https://doi.org/10.1007/s11064-015-1728-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1728-5

Keywords

Navigation