Skip to main content
Log in

Upregulation of Metallothioneins After Exposure of Cultured Primary Astrocytes to Silver Nanoparticles

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

To test for the prolonged consequences of a short transient exposure of astrocytes to silver nanoparticles (AgNP), cultured primary astrocytes were incubated for 4 h in the presence of AgNP and the cell viability as well as various metabolic parameters were investigated during a subsequent incubation in AgNP-free medium. Acute exposure of astrocytes to AgNP led to a concentration-dependent increase in the specific cellular silver content to up to 46 nmol/mg protein, but did not compromise cell viability. During a subsequent incubation of the cells in AgNP-free medium, the cellular silver content of AgNP-treated astrocytes remained almost constant for up to 7 days. The cellular presence of AgNP did neither induce any delayed cell toxicity nor were alterations in cellular glucose consumption, lactate production or in the cellular ratio of glutathione to glutathione disulfide observed. However, Western blot analysis and immunocytochemical staining revealed that AgNP-treated astrocytes strongly upregulated the expression of metallothioneins. These results demonstrate that a prolonged presence of accumulated AgNP does not compromise the viability and the basal metabolism of cultured astrocytes and suggest that the upregulation of metallothioneins may help to prevent silver-mediated toxicity that could be induced by AgNP-derived silver ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloid Surf B 79(1):5–18

    Article  CAS  Google Scholar 

  2. Ahamed M, AlSalhi MS, Siddiqui MKJ (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411(23–24):1841–1848

    Article  PubMed  CAS  Google Scholar 

  3. Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ 408(5):999–1006

    Article  PubMed  CAS  Google Scholar 

  4. Stensberg MC, Wei Q, McLamore ES, Porterfield DM, Wei A, Sepúlveda MS (2011) Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine 6(5):879–898. doi:10.2217/nnm.11.78

    Article  PubMed  CAS  Google Scholar 

  5. Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111(5):3407–3432. doi:10.1021/cr1003166

    Article  PubMed  CAS  Google Scholar 

  6. Tang JL, Xiong L, Zhou GF, Wang S, Wang JY, Liu L, Li JG, Yuan FQ, Lu SF, Wan ZY, Chou LS, Xi TF (2010) Silver nanoparticles crossing through and distribution in the blood-brain barrier in vitro. J Nanosci Nanotechnol 10(10):6313–6317. doi:10.1166/jnn.2010.2625

    Article  PubMed  CAS  Google Scholar 

  7. Sharma HS, Patnaik R, Sharma A (2010) Diabetes aggravates nanoparticles induced breakdown of the blood-brain barrier permeability, brain edema formation, alterations in cerebral blood flow and neuronal injury. An experimental study using physiological and morphological investigations in the rat. J Nanosci Nanotechnol 10(12):7931–7945. doi:10.1166/jnn.2010.3616

    Article  PubMed  CAS  Google Scholar 

  8. Trickler WJ, Lantz SM, Murdock RC, Schrand AM, Robinson BL, Newport GD, Schlager JJ, Oldenburg SJ, Paule MG, Slikker W, Hussain SM, Ali SF (2010) Silver nanoparticle induced blood-brain barrier inflammation and increased permeability in primary rat brain microvessel endothelial cells. Toxicol Sci 118(1):160–170. doi:10.1093/toxsci/kfq244

    Article  PubMed  CAS  Google Scholar 

  9. Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58(9):1094–1103. doi:10.1002/glia.20990

    Article  PubMed  Google Scholar 

  10. Ji JH, Jung JH, Kim SS, Yoon J-U, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH, Sung JH, Song KS, Yu IJ (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague–Dawley rats. Inhal Toxicol 19(10):857–871. doi:10.1080/08958370701432108

    Article  PubMed  CAS  Google Scholar 

  11. Win-Shwe TT, Fujimaki H (2011) Nanoparticles and neurotoxicity. Int J Mol Sci 12(9):6267–6280. doi:10.3390/ijms12096267

    Article  PubMed  CAS  Google Scholar 

  12. Luther EM, Koehler Y, Diendorf J, Epple M, Dringen R (2011) Accumulation of silver nanoparticles by cultured primary brain astrocytes. Nanotechnology 22(37):375101. doi:10.1088/0957-4484/22/37/375101

    Article  PubMed  Google Scholar 

  13. Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Köller M (2011) Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater 7(1):347–354

    Article  PubMed  CAS  Google Scholar 

  14. Hamprecht B, Löffler F (1985) Primary glial cultures as a model for studying hormone action. Method Enzymol 109:341–345

    Article  CAS  Google Scholar 

  15. Dringen R, Kussmaul L, Hamprecht B (1998) Detoxification of exogenous hydrogen peroxide and organic hydroperoxides by cultured astroglial cells assessed by microtiter plate assay. Brain Res Prot 2(3):223–228

    Article  CAS  Google Scholar 

  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  17. Dringen R, Hamprecht B (1996) Glutathione content as an indicator for the presence of metabolic pathways of amino acids in astroglial cultures. J Neurochem 67(4):1375–1382. doi:10.1046/j.1471-4159.1996.67041375.x

    Article  PubMed  CAS  Google Scholar 

  18. Liddell JR, Zwingmann C, Schmidt MM, Thiessen A, Leibfritz D, Robinson SR, Dringen R (2009) Sustained hydrogen peroxide stress decreases lactate production by cultured astrocytes. J Neurosci Res 87(12):2696–2708. doi:10.1002/jnr.22093

    Article  PubMed  CAS  Google Scholar 

  19. Hohnholt MC, Geppert M, Dringen R (2011) Treatment with iron oxide nanoparticles induces ferritin synthesis but not oxidative stress in oligodendroglial cells. Acta Biomater 7(11):3946–3954. doi:10.1016/j.actbio.2011.06.052

    Article  PubMed  CAS  Google Scholar 

  20. Aschner M, Conklin DR, Yao CP, Allen JW, Tan KH (1998) Induction of astrocyte metallothioneins (MTs) by zinc confers resistance against the acute cytotoxic effects of methylmercury on cell swelling, Na+ uptake, and K+ release. Brain Res 813(2):254–261. doi:10.1016/s0006-8993(98)00947-0

    Article  PubMed  CAS  Google Scholar 

  21. Aschner M, Cherian MG, Klaassen CD, Palmiter RD, Erickson JC, Bush AI (1997) Metallothioneins in brain—the role in physiology and pathology. Toxicol Appl Pharmacol 142(2):229–242. doi:10.1006/taap.1996.8054

    Article  PubMed  CAS  Google Scholar 

  22. Haase A, Rott S, Mantion A, Graf P, Plendl J, Thünemann AF, Meier WP, Taubert A, Luch A, Reiser G (2012) Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci 126(2):457–468. doi:10.1093/toxsci/kfs003

    Article  PubMed  CAS  Google Scholar 

  23. Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ (2012) Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 28(5):2727–2735. doi:10.1021/la2042058

    Article  PubMed  CAS  Google Scholar 

  24. Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190(2):156–162

    Article  PubMed  CAS  Google Scholar 

  25. Powers CM, Badireddy AR, Ryde IT, Seidler FJ, Slotkin TA (2010) Silver nanoparticles compromise neurodevelopment in PC12 Cells: critical contributions of silverion, particle size, coating, and composition. Environ Health Persp 119(1):37–44

    Article  Google Scholar 

  26. Greulich C, Diendorf J, Gessmann J, Simon T, Habijan T, Eggeler G, Schildhauer TA, Epple M, Koller M (2011) Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta Biomater 7(9):3505–3514. doi:10.1016/j.actbio.2011.05.030

    Article  PubMed  CAS  Google Scholar 

  27. Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW (2011) Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 201(1):92–100. doi:10.1016/j.toxlet.2010.12.010

    Article  PubMed  CAS  Google Scholar 

  28. Hirrlinger J, Dringen R (2010) The cytosolic redox state of astrocytes: maintenance, regulation and functional implications for metabolite trafficking. Brain Res Rev 63(1–2):177–188

    Article  PubMed  CAS  Google Scholar 

  29. Tulpule K, Robinson SR, Bishop GM, Dringen R (2010) Uptake of ferrous iron by cultured rat astrocytes. J Neurosci Res 88(3):563–571. doi:10.1002/jnr.22217

    PubMed  CAS  Google Scholar 

  30. Geppert M, Hohnholt MC, Thiel K, Nürnberger S, Grunwald I, Rezwan K, Dringen R (2011) Uptake of dimercaptosuccinate-coated magnetic iron oxide nanoparticles by cultured brain astrocytes. Nanotechnology 22(14):145101

    Article  PubMed  Google Scholar 

  31. Hoepken HH, Korten T, Robinson SR, Dringen R (2004) Iron accumulation, iron-mediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate. J Neurochem 88(5):1194–1202

    Article  PubMed  CAS  Google Scholar 

  32. Dang TN, Bishop GM, Dringen R, Robinson SR (2011) The metabolism and toxicity of hemin in astrocytes. Glia 59(10):1540–1550. doi:10.1002/glia.21198

    Article  PubMed  Google Scholar 

  33. Kramer KK, Liu J, Choudhuri S, Klaassen CD (1996) Induction of metallothionein mRNA and protein in murine astrocyte cultures. Toxicol Appl Pharmacol 136(1):94–100. doi:10.1006/taap.1996.0011

    Article  PubMed  CAS  Google Scholar 

  34. West AK, Hidalgo J, Eddins D, Levin ED, Aschner M (2008) Metallothionein in the central nervous system: roles in protection, regeneration and cognition. Neurotoxicology 29(3):489–503. doi:10.1016/j.neuro.2007.12.006

    Article  PubMed  CAS  Google Scholar 

  35. Hidalgo J, Garcia A, Oliva AM, Giralt M, Gasull T, Gonzalez B, Milnerowicz H, Wood A, Bremner I (1994) Effect of zinc, copper and glucocorticoids on metallothionein levels of cultured neurons and astrocytes from rat brain. Chem Biol Interact 93(3):197–219

    Article  PubMed  Google Scholar 

  36. Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun 390(3):733–737. doi:10.1016/j.bbrc.2009.10.039

    Article  PubMed  CAS  Google Scholar 

  37. Kang SJ, I Ryoo, Lee YJ, Kwak M-K (2012) Role of the Nrf2-heme oxygenase-1 pathway in silver nanoparticle-mediated cytotoxicity. Toxicol Appl Pharmacol 258(1):89–98. doi:10.1016/j.taap.2011.10.011

    Article  PubMed  CAS  Google Scholar 

  38. AshaRani P, Hande MP, Valiyaveettil S (2009) Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 10(1):65

    Article  PubMed  CAS  Google Scholar 

  39. Heuchel R, Radtke F, Georgiev O, Stark G, Aguet M, Schaffner W (1994) The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J 13(12):2870–2875

    PubMed  CAS  Google Scholar 

  40. Andrews GK (2000) Regulation of metallothionein gene expression by oxidative stress and metal ions. Biochem Pharmacol 59(1):95–104. doi:10.1016/s0006-2952(99)00301-9

    Article  PubMed  CAS  Google Scholar 

  41. Vašák M, Meloni G (2011) Chemistry and biology of mammalian metallothioneins. J Biol Inorg Chem 16(7):1067–1078. doi:10.1007/s00775-011-0799-2

    Article  PubMed  Google Scholar 

  42. Floriańczyk B (2007) Metallothioneins and its role in metal regulation, binding of reactive oxygen species, apoptosis and cell differentiation. J Pre-Clin Clin Res 1(1):016–018

    Google Scholar 

  43. Cortese-Krott MM, Münchow M, Pirev E, Heβner F, Bozkurt A, Uciechowski P, Pallua N, Kröncke K-D, Suschek CV (2009) Silver ions induce oxidative stress and intracellular zinc release in human skin fibroblasts. Free Radic Biol Med 47(11):1570–1577. doi:10.1016/j.freeradbiomed.2009.08.023

    Article  PubMed  CAS  Google Scholar 

  44. Ohtsuji M, Katsuoka F, Kobayashi A, Aburatani H, Hayes JD, Yamamoto M (2008) Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes. J Biol Chem 283(48):33554–33562. doi:10.1074/jbc.M804597200

    Article  PubMed  CAS  Google Scholar 

  45. Reisman SA, Aleksunes LM, Klaassen CD (2009) Oleanolic acid activates Nrf2 and protects from acetaminophen hepatotoxicity via Nrf2-dependent and Nrf2-independent processes. Biochem Pharmacol 77(7):1273–1282

    Article  PubMed  CAS  Google Scholar 

  46. Bishop GM, Dringen R, Robinson SR (2007) Zinc stimulates the production of toxic reactive oxygen species (ROS) and inhibits glutathione reductase in astrocytes. Free Rad Biol Med 42(8):1222–1230

    Article  PubMed  CAS  Google Scholar 

  47. Yao CP, Allen JW, Mutkus LA, Xu SB, Tan KH, Aschner M (2000) Foreign metallothionein-I expression by transient transfection in MT-I and MT-II null astrocytes confers increased protection against acute methylmercury cytotoxicity. Brain Res 855(1):32–38. doi:10.1016/s0006-8993(99)02211-8

    Article  PubMed  CAS  Google Scholar 

  48. Hidalgo J, Aschner M, Zatta P, Vašák M (2001) Roles of the metallothionein family of proteins in the central nervous system. Brain Res Bull 55(2):133–145. doi:10.1016/s0361-9230(01)00452-x

    Article  PubMed  CAS  Google Scholar 

  49. Tiffany-Castiglioni E, Qian Y (2001) Astroglia as metal depots: molecular mechanisms for metal accumulation, storage and release. Neurotoxicology 22(5):577–592

    Article  CAS  Google Scholar 

  50. Dringen R, Bishop G, Koeppe M, Dang T, Robinson S (2007) The pivotal role of astrocytes in the metabolism of iron in the brain. Neurochem Res 32(11):1884–1890. doi:10.1007/s11064-007-9375-0

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

E.M. Luther is a member of the Ph.D. graduate school nanoToxCom at the University of Bremen and would like to thank the Hans-Böckler Stiftung for her Ph.D. fellowship. M. Epple thanks the Deutsche Forschungsgemeinschaft for funding within the Priority Program SPP 1313 BioNanoResponses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Dringen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luther, E.M., Schmidt, M.M., Diendorf, J. et al. Upregulation of Metallothioneins After Exposure of Cultured Primary Astrocytes to Silver Nanoparticles. Neurochem Res 37, 1639–1648 (2012). https://doi.org/10.1007/s11064-012-0767-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0767-4

Keywords

Navigation