Skip to main content
Log in

Tyrosine Nitration is a Novel Post-translational Modification Occurring on the Neural Intermediate Filament Protein Peripherin

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The biological implication of protein tyrosine nitration in signaling pathways triggered by nitric oxide is recently emerging. Here we report for the first time that nitrotyrosination occurs in the neural intermediate filament protein peripherin. In neuron-like PC12 cells, nitrated peripherin is associated with the cytoskeleton fraction, its level increases during the progression of NGF-induced differentiation and the nitrated protein remains closely associated with stable microtubules. Tyr 17 and Tyr 376 were identified by MALDI-TOF analyses as two specific residues endogenously nitrated. Finally, peripherin nitration is not restricted to PC12 cells but it is also present in vivo in rat brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schopfer FJ, Baker PRS, Freeman B (2003) NO-dependent protein nitration: a cell signaling event or an oxidative inflammatory response? Trends Biochem Sci 28:646–654

    Article  PubMed  CAS  Google Scholar 

  2. Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol Cell Physiol 271:C1424–1437

    CAS  Google Scholar 

  3. Greenacre SA, Ischiropoulos H (2001) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res 34:541–581

    Article  PubMed  CAS  Google Scholar 

  4. Irie Y, Saeki M, Kamisaki Y et al (2003) Histone H1.2 is a substrate for denitrase, an activity that reduces nitrotyrosine immunoreactivity in proteins. Proc Natl Acad Sci USA 100:5634–5639

    Article  PubMed  CAS  Google Scholar 

  5. Gow AJ, Farkouh CR, Munson DA et al (2004) Biological significance of nitric oxide-mediated protein modifications. Am J Physiol Lung Cell Mol Physiol 287:L262–L268

    Article  PubMed  CAS  Google Scholar 

  6. Cappelletti G, Maggioni MG, Tedeschi G et al (2003) Protein tyrosine nitration is triggered by nerve growth factor during neuronal differentiation of PC12 cells. Exp Cell Res 288:9–20

    Article  PubMed  CAS  Google Scholar 

  7. Cappelletti G, Tedeschi G, Maggioni MG et al (2004) The nitration of tau protein in neurone-like PC12 cells. FEBS Lett 562:35–39

    Article  PubMed  CAS  Google Scholar 

  8. Tedeschi G, Cappelletti G, Negri A et al (2005) Characterization of nitroproteome in neuron-like PC12 cells differentiated with nerve growth factor: identification of two nitration sites in α-tubulin. Proteomics 5:2422–2432

    Article  PubMed  CAS  Google Scholar 

  9. Peunova N, Enikolopov G (1995) Nitric oxide triggers a switch to growth arrest during differentiation of neuronal cells. Nature 375:68–73

    Article  PubMed  CAS  Google Scholar 

  10. Cappelletti G, Maggioni MG, Ronchi C et al (2006) Protein tyrosine nitration is associated with cold- and drug-resistant microtubules in neuronal-like PC12 cells. Neurosci Lett 401:159–164

    Article  PubMed  CAS  Google Scholar 

  11. Troy CM, Greene LA, Shelanski ML (1992) Neurite outgrowth in peripherin-depleted PC12 cells. J Cell Biol 117:1085–1092

    Article  PubMed  CAS  Google Scholar 

  12. Conrad CC, Malakowsky CA, Talent J et al (2001) Chemiluminescent standards for quantitive comparison of two-dimensional electrophoresis western blots. Proteomics 1:365–369

    Article  PubMed  CAS  Google Scholar 

  13. Miyagi M, Sakaguchi H, Darrow RM et al (2002) Evidence that light modulates protein nitration in rat retina. Mol Cell Proteomics 1:293–303

    Article  PubMed  CAS  Google Scholar 

  14. Sarver A, Scheffler NK, Shetlar MD et al (2001) Analysis of peptides and proteins containing nitrotyrosine by matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom 12:439–448

    Article  PubMed  CAS  Google Scholar 

  15. Turko IV, Murad F (2005) Mapping sites of tyrosine nitration by matrix-assisted laser desorption/ionization mass spectrometry. Methods Enzymol 396:266–275

    PubMed  CAS  Google Scholar 

  16. Kriz J, Beaulieu JM, Julien JP et al (2005) Up-regulation of peripherin is associated with alterations in synaptic plasticity in CA1 and CA3 regions of hippocampus. Neurobiol Disease 18:409–420

    Article  CAS  Google Scholar 

  17. Aulak KM, Miyagi M, Yan L et al (2001) Proteomic method identifies proteins nitrated during inflammatory challenge. Proc Natl Acad Sci USA 98:12056–12061

    Article  PubMed  CAS  Google Scholar 

  18. Hanafy KA, Krumenacker JS, Murad F (2001) NO, nitrotyrosine, and cyclic GMP in signal transduction. Med Sci Monit 7:801–819

    PubMed  CAS  Google Scholar 

  19. Aletta JM, Shelanski ML, Greene LA (1989) Phosphorylation of the peripherin 58-kDa neuronal intermediate filament protein. J Biol Chem 264:4619–4627

    PubMed  CAS  Google Scholar 

  20. Sacksteder CA, Qian WJ, Knyushko TV et al (2006) Endogenously nitrated proteins in mouse brain: links to neurodegenerative disease. Biochemistry 45:8009–8022

    Article  PubMed  CAS  Google Scholar 

  21. Angelastro JM, Ho CL, Frappier T et al (1998) Peripherin is tyrosine-phosphorylated at its carboxyl-terminal tyrosine. J Neurochem 70:540–549

    Article  PubMed  CAS  Google Scholar 

  22. Ischiropoulos H (2003) Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun 305:776–783

    Article  PubMed  CAS  Google Scholar 

  23. Helfand BT, Mendez MG, Pugh J et al (2003) A role for intermediate filaments in determining and maintaining the shape of nerve cells. Mol Biol Cell 14:5069–5081

    Article  PubMed  CAS  Google Scholar 

  24. Su Y, Kondrikov D, Block ER (2005) Cytoskeletal regulation of nitric oxide synthase. Cell Biochem Biophys 43:439–449

    Article  PubMed  CAS  Google Scholar 

  25. Rhich-Haddout F, Klosen P, Portier MM et al (1997) Expression of peripherin, NADPH-diaphorase and NOS in the adult rat neocortex. Neuroreport 8:3313–3316

    Article  Google Scholar 

  26. Rothe F, Possel H, Wolf G (2002) Nitric oxide affects the phosphorilation state of microtubule-associated protein 2 (MAP-2) and neurifilament: an immunochemical study in the brain of rats and neuronal nitric oxide synthase (nNOS)-knockouts. Nitric Oxide 6:9–17

    Article  PubMed  CAS  Google Scholar 

  27. Palumbo A, Fiore G, Di Cristo C et al (2002) NMDA receptor stimulation induces temporary alpha-tubulin degradation signaled by nitric oxide-mediated tyrosine nitration in the nervous system of Sepia officinalis. Biochem Biophys Res Commun 293:1536–1543

    Article  PubMed  CAS  Google Scholar 

  28. Dremina ES, Sharov VS, Schoneich C (2005) Protein tyrosine nitration in rat brain is associated with raft proteins, flotillin-1 and alpha-tubulin: effect of biological aging. J Neurochem 93:1262–71

    Article  PubMed  CAS  Google Scholar 

  29. Oh JE, Karlmark Raja K, Shin JH et al (2006) Cytoskeleton changes following differentiation of N1E-115 neuroblastoma cell line. Amino Acids 31:289–298

    Article  PubMed  CAS  Google Scholar 

  30. Monteiro HP (2002) Signal transduction by protein tyrosine nitration: competition or cooperation with tyrosine phosphorylation-dependent signaling events? Free Radic Biol Med 33:765–773

    Article  PubMed  CAS  Google Scholar 

  31. Di Stasi AM, Mallozzi C, Macchia G et al (1999) Peroxynitrite induces tryosine nitration and modulates tyrosine phosphorylation of synaptic proteins. J Neurochem 73:727–735

    Article  PubMed  CAS  Google Scholar 

  32. Ischiropoulos H (2003) Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophy Res Comm 305:776–783

    Article  CAS  Google Scholar 

  33. Strelkov SV, Herrmann H, Geisler N et al (2002) Conserved segments 1A and 2B of the intermediate filament dimer: their atomic structures and role in filament assembly. EMBO J 21:1255–1266

    Article  PubMed  CAS  Google Scholar 

  34. Ralton JE, Lu X, Hutcheson AM, Quinlan RA (1994) Identification of two N-terminal non-alpha-helical domain motifs important in the assembly of glial fibrillary acidic protein. J Cell Sci 107:1935–1948

    PubMed  CAS  Google Scholar 

  35. Reynolds MR, Berry RW, Binder LI (2005) Site-specific nitration differentially influences tau assembly in vitro. Biochemistry 44:13997–14009

    Article  PubMed  CAS  Google Scholar 

  36. Casoni F, Basso M, Massignan T et al (2005) Protein nitration in a mouse model of familial amyotrophic lateral sclerosis. J Biol Chem 280:16295–16304

    Article  PubMed  CAS  Google Scholar 

  37. Strong MJ, Sopper MM, Crow JP et al (1998) Nitration of the low molecular weight neurofilament is equivalent in sporadic amyotrophic lateral sclerosis and control cervical spinal cord. Biochem Biophys Res Comm 248:157–164

    Article  PubMed  CAS  Google Scholar 

  38. Aslan M, Ryan TM, Townes TM et al (2003) Nitric oxide-dependent generation of reactive species in sickle cell disease. J Biol Chem 278:4194–4204

    Article  PubMed  CAS  Google Scholar 

  39. Zhang YJ, Xu YF, Liu YH et al (2006) Peroxynitrite induces Alzheimer-like tau modifications and accumulation in rat brain and its underlying mechanisms. FASEB J 20:1431–1442

    Article  PubMed  CAS  Google Scholar 

  40. Eiserich JP, Estévez AG, Bamberg TV et al (1999) Microtubule dysfunction by posttranslational nitrotyrosination of α-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc Natl Acad Sci USA 96:6365–6370

    Article  PubMed  CAS  Google Scholar 

  41. Dalfò E, Martinez A, Muntanè G et al (2006) Abnormal α-synuclein solubility, aggregation and nitration in the frontal cortex in Pick’s disease. Neurosci Lett 400:125–129

    Article  PubMed  CAS  Google Scholar 

  42. Uversky VN, Yamin G, Munishkina LA et al (2005) Effects of nitration on the structure and aggregation of α-synuclein. Brain Res Mol Brain Res 134:84–102

    Article  PubMed  CAS  Google Scholar 

  43. Lariviere RC, Julien JP (2004) Function of intermediate filaments in neuronal development and disease. J Neurobiol 58:131–148

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. Francesco Corniola for the assistance in figures preparation. This work was supported by grants from FIRST 2003–2004 (University of Milano).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriella Tedeschi.

Additional information

Gabriella Tedeschi and Graziella Cappelletti contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tedeschi, G., Cappelletti, G., Nonnis, S. et al. Tyrosine Nitration is a Novel Post-translational Modification Occurring on the Neural Intermediate Filament Protein Peripherin. Neurochem Res 32, 433–441 (2007). https://doi.org/10.1007/s11064-006-9244-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-006-9244-2

Keywords

Navigation