Skip to main content
Log in

A Bidirectional Hetero-Associative Memory for True-Color Patterns

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

Classical bidirectional associative memories (BAM) have poor memory storage capacity, are sensitive to noise, are subject to spurious steady states during recall, and can only recall bipolar patterns. In this paper, we introduce a new bidirectional hetero-associative memory model for true-color patterns that uses the associative model with dynamical synapses recently introduced in Vazquez and Sossa (Neural Process Lett, Submitted, 2008). Synapses of the associative memory could be adjusted even after the training phase as a response to an input stimulus. Propositions that guarantee perfect and robust recall of the fundamental set of associations are provided. In addition, we describe the behavior of the proposed associative model under noisy versions of the patterns. At last, we present some experiments aimed to show the accuracy of the proposed model with a benchmark of true-color patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson JA (1972) A simple neural network generating an interactive memory. Math Biosci 14: 197–220. doi:10.1016/0025-5564(72)90075-2

    Article  MATH  Google Scholar 

  2. Arik S (2005) Global asymptotic stability analysis of bidirectional associative memory neural networks with time delays. IEEE Trans Neural Netw 16(3): 580–586. doi:10.1109/TNN.2005.844910

    Article  Google Scholar 

  3. Asch SE, Ebenholtz SM (1962) The principle of associative symmetry. Proc Am Philos Soc 106: 135–163

    Google Scholar 

  4. Cao J, Wang J (2005) Global exponential stability and periodicity of recurrent neural networks with time delays. IEEE Trans Circuit Syst I Reg Pap 52(5): 920–931

    Article  MathSciNet  Google Scholar 

  5. Cao J, Xiao M (2007) Stability and Hopf bifurcation in a simplified BAM neural network with two time delays. IEEE Trans Neural Netw 18(2): 416–430. doi:10.1109/TNN.2006.886358

    Article  MathSciNet  Google Scholar 

  6. Casali D et al (2006) Associative memory design using a support vector machine. IEEE Trans Neural Netw 17(5): 1165–1174. doi:10.1109/TNN.2006.877539

    Article  MathSciNet  Google Scholar 

  7. Charlier S et al (2006) NDRAM: Non linear dynamic recurrent associative memory for learning bipolar and nonbipolar correlated patterns. IEEE Trans Neural Netw 16(6): 1393–1400. doi:10.1109/TNN.2005.852861

    Article  Google Scholar 

  8. Chartier S, Boukadoum M (2006) A bidirectional heteroassociative memory for binary and grey level patterns. IEEE Trans Neural Netw 17(2): 385–396. doi:10.1109/TNN.2005.863420

    Article  Google Scholar 

  9. Chung F-L, Lee T (1996) On fuzzy associative memory with multiple-rule storage capacity. IEEE Trans Fuzzy Syst 4(4): 375–384. doi:10.1109/91.531778

    Article  MathSciNet  Google Scholar 

  10. Du S, Chen Z, Yuan Z, Zhang X (2005) Sensitivity to noise in bidirectional associative memory (BAM). IEEE Trans Neural Netw 16(4): 887–898. doi:10.1109/TNN.2005.849832

    Article  Google Scholar 

  11. Ebbinghaus H (1885) Memory: a contribution to experimental psychology. Teachers College, Columbia University, New York

    Google Scholar 

  12. Han S-H, Gu Y-D, Li HL (2007) An application of incline matrices in dynamics analysis of generalized fuzzy bidirectional associative memories. Fuzzy Sets Syst 158: 1340–1347. doi:10.1016/j.fss.2007.02.002

    Article  MATH  MathSciNet  Google Scholar 

  13. Hebb DO (1949) The organization of behavior. Wiley, New York

    Google Scholar 

  14. Ho DWC, Liang J, Lam J (2006) Global exponential stability of impulsive high-order BAM neural network with time-varying delaya. Neural Netw 19: 1581–1590. doi:10.1016/j.neunet.2006.02.006

    Article  MATH  Google Scholar 

  15. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79: 2554–2558. doi:10.1073/pnas.79.8.2554

    Article  MathSciNet  Google Scholar 

  16. Jiang H, Cao J (2008) BAM-type Cohen-Grossberg neural network with time delays. Math Comput Model 47: 92–103. doi:10.1016/j.mcm.2007.02.020

    Article  MATH  MathSciNet  Google Scholar 

  17. Jovanova-Nesic KD, Jankovic BD (2005) The neuronal and immune memory systems as supervisors of neural plasticity and aging of the brain: from phenomenology to coding of information. Ann NY Acad Sci 1057: 279–295. doi:10.1196/annals.1356.022

    Article  Google Scholar 

  18. Kohler W (1947) Gestalt psychology. Liveright, New York

    Google Scholar 

  19. Kohonen T (1972) Correlation matrix memories. IEEE Trans Comput 21(4): 353–359

    MATH  Google Scholar 

  20. Kosko B (1987) Adaptive bidirectional associative memories. Appl Opt 26: 4947–4960

    Article  Google Scholar 

  21. Kosko B (1988) Bidirectional associative memories. IEEE Trans Syst Man Cybern 18(1): 49–60. doi:10.1109/21.87054

    Article  MathSciNet  Google Scholar 

  22. Kutas M, Hillyard SA (1984) Brain potentials during reading reflect word expectancy and semantic association. Nature 307: 161–163. doi:10.1038/307161a0

    Article  Google Scholar 

  23. Laughlin SB, Sejnowski TJ (2003) Communication in neuronal networks. Science 301: 1870–1874. doi:10.1126/science.1089662

    Article  Google Scholar 

  24. Lee D-L (2006) Improvements of complex-valued Hopfiel associative memory by using generalized projections rules. IEEE Trans Neural Netw 17(5): 1341–1347. doi:10.1109/TNN.2006.878786

    Article  Google Scholar 

  25. Lenze B (2001) Improving Leung’s bidirectional learning rule for associative memories. IEEE Trans Neural Netw 12(5): 1222–1226. doi:10.1109/72.950150

    Article  Google Scholar 

  26. Leung CS (1994) Optimum learning for bidirectional associative memory in the sense of capacity. IEEE Trans Syst Man Cybern 24(5): 791–796. doi:10.1109/21.293495

    Article  Google Scholar 

  27. Lou X, Cui B (2008) Global asymptotic stability of a delay BAM neural network with impulses based on matrix theory. Appl Math Model 32: 232–239. doi:10.1016/j.apm.2006.11.015

    Article  MATH  Google Scholar 

  28. Lu J et al (2006) Topology influences performance in the associative memory neural network. Phys Lett A 354: 335–343. doi:10.1016/j.physleta.2006.01.085

    Article  Google Scholar 

  29. McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5: 115–133. doi:10.1007/BF02478259

    Article  MATH  MathSciNet  Google Scholar 

  30. Mu X et al (2007) A weighted voting model of associative memory. IEEE Trans Neural Netw 18(3): 756–777. doi:10.1109/TNN.2007.891196

    Article  Google Scholar 

  31. Nakano K (1972) Associatron: a model of associative memory. IEEE Trans Syst Man Cybern SMC 2(3): 380–388

    Article  Google Scholar 

  32. Price CJ (2000) The anatomy of language: contributions from functional neuroimaging. J Anat 197(3): 335–359. doi:10.1046/j.1469-7580.2000.19730335.x

    Article  Google Scholar 

  33. Rehn M, Sommer FT (2006) Storing and restoring visual input with collavorative rank coding and associative memory. Neurocomputing 69: 1219–1223. doi:10.1016/j.neucom.2005.12.080

    Article  Google Scholar 

  34. Reinvan I (1998) Amnestic disorders and their role in cognitive theory. Scand J Psychol 39(3): 141–143. doi:10.1111/1467-9450.393068

    Article  Google Scholar 

  35. Ritter GX, Sussner P, Diazde Leon JL (1998) Morphological associative memories. IEEE Trans Neural Netw 9(2): 281–293. doi:10.1109/72.661123

    Article  Google Scholar 

  36. Rizzuto DS, Kahana MJ (2000) Associative symmetry vs. independent association. Neurocomputing 32-33: 973–978. doi:10.1016/S0925-2312(00)00268-X

    Article  Google Scholar 

  37. Robinson ES (1932) Association theory today: an essay in systematic psychology. Century Co., New York

    Google Scholar 

  38. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage & organization in the brain. Psychol Rev 65: 386–408. doi:10.1037/h0042519

    Article  MathSciNet  Google Scholar 

  39. Shen D, Cruz JB (2005) Encoding strategy for maximum noise tolerance bidirectional associative memory. IEEE Trans Neural Netw 16(2): 293–300. doi:10.1109/TNN.2004.841793

    Article  Google Scholar 

  40. Sossa H, Barron R, Vazquez RA (2004) New associative memories to recall real-valued patterns. In: Sanfeliu A, Trinidad JFM, Carrasco-Ochoa JA (eds) Progress in pattern recognition, image analysis and applications, 9th Iberoamerican congress on pattern recognition, CIARP 2004, Puebla, Mexico, October 26–29, 2004, proceedings. Lecture Notes in Computer Science, N 3287. Springer, pp 195–202

  41. Sossa H, Barron R, Vazquez RA (2004) Transforming fundamental set of patterns to canonical form to improve pattern recall. In: Lemaître C, Reyes CA, González JA (eds) Advances in artificial intelligence—IBERAMIA 2004, 9th Ibero-American conference on AI, Puebla, México, November 22–26, 2004, proceedings. Lecture Notes in Artificial Intelligence, N 3315. Springer, pp 687–696

  42. Steinbuch K (1961) Die lernmatrix. Kybernetik 1(1): 26–45. doi:10.1007/BF00293853

    Article  Google Scholar 

  43. Sun C, Han M, Pang X (2007) Global Hopf bifuracation analysis on a BAM neural network with delays. Phys Lett A 360: 689–695. doi:10.1016/j.physleta.2006.08.078

    Article  MathSciNet  Google Scholar 

  44. Sussner P, Valle M (2006) Gray-scale morphological associative memories. IEEE Trans Neural Netw 17(3): 559–570. doi:10.1109/TNN.2006.873280

    Article  Google Scholar 

  45. Tang H et al (2006) Dynamic analysis and analog associative memory of network with LT neurons. IEEE Trans Neural Netw 17(2): 409–418. doi:10.1109/TNN.2005.863457

    Article  Google Scholar 

  46. Vazquez RA, Sossa H, Garro BA (2006) A new bidirectional associative memory. In: MICAI 2006: advances in artificial intelligence, 5th Mexican international conference on artificial intelligence, Apizaco, Mexico, November 2006, proceedings. Lecture Notes in Artificial Intelligence, N 4293, Springer, pp 367–380

  47. Vazquez RA, Sossa H, Garro BA (2007) 3D Object recognition based on low frequencies response and random feature selections. In: MICAI 2007: advances in artificial intelligence, 6th Mexican international conference on artificial intelligence, Aguascalientes, Mexico, November 5–9, 2007, proceedings. Lecture Notes in Artificial Intelligence, N 4827, Springer, pp 694–704

  48. Vazquez RA, Sossa H, Garro BA (2007) Low frequency responses and random feature selection applied to face recognition. In: Kamel M, Campilho A (eds) ICIAR 2007: image analysis and recognition, international conference ICIAR 2007, Toronto, Canada, August 22–24, proceedings. Lecture Notes in Computers Sciences, N 4633, Springer, pp 818–830

  49. Vazquez RA, Sossa JH (2008) A new associative memory with dynamical synapses. Neural Process Lett (Submitted)

  50. Wang C-C, Don H-S (1995) An analysis of high-capacity discrete exponential BAM. IEEE Trans Neural Netw 6(2): 492–496. doi:10.1109/72.363485

    Article  Google Scholar 

  51. Wang L, Zou Z (2004) Capacity of stable periodic solutions in discretetime bidirectional associative memory neural networks. IEEE Trans Circuit Syst II Exp Briefs 51: 315–319

    Article  Google Scholar 

  52. Wang ST, Lu H (2004) On new fuzzy morphological associative memories. IEEE Trans Fuzzy Syst 12(3): 316–323. doi:10.1109/TFUZZ.2004.825977

    Article  Google Scholar 

  53. Wang Y-F, Cruz JB, Mulligan JH (1991) Guaranteed recall of all training pairs for bidirectional associative memory. IEEE Trans Neural Netw 2(6): 559–567. doi:10.1109/72.97933

    Article  Google Scholar 

  54. Wickramasinghe LK et al (2007) A novel episodic associative memory model for enhanced classification accuracy. Pattern Recognit Lett 28: 1193–1202. doi:10.1016/j.patrec.2007.02.012

    Article  Google Scholar 

  55. Zhu J, von der Malsburg C (2006) Associative memory of conectivety patterns. Neurocomputing 69: 1305–1308. doi:10.1016/j.neucom.2005.12.097

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto A. Vázquez Espinoza de los Monteros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de los Monteros, R.A.V.E., Azuela, J.H.S. A Bidirectional Hetero-Associative Memory for True-Color Patterns. Neural Process Lett 28, 131–153 (2008). https://doi.org/10.1007/s11063-008-9086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-008-9086-9

Keywords

Navigation