Skip to main content
Log in

Increment Learning and Rapid Retrieval of Visual Information Based on Pattern Association Memory

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, we present a simple yet powerful visual memory model called Increment Pattern Association Memory Model to achieve increment learning and rapid retrieval of visual information. We extend the basic pattern association network by learning patterns based on Leabra framework which combines error-driven learning and Hebbian learning together. In the proposed model, image features act as conditioned stimulus and class labels act as unconditioned stimulus. Increment Learning is achieved by assigning individual synaptic weight to different categories. Meanwhile, k-winners-take-all inhibitory competition function is employed to achieve sparse distributed representations. In addition, normalized dot product is used to realize rapid recall of visual memory. To evaluate the performance of the proposed model, we conduct a series of experiments on three benchmark datasets using three feature-extraction methods. Experimental results demonstrate that the proposed model has a compelling advantage over some prevalent neural networks such as SOINN, BPNN, Biased ART and Self-supervised ART.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fei-Fei L, Perona P (2005) A bayesian hierarchical model for learning natural scene categories. In: IEEE computer society conference on computer vision and pattern recognition, vol 2. IEEE, pp 524–531

  2. Cisek P, Drew T, Kalaska J (2007) Computational neuroscience: theoretical insights into brain function. Elsevier, Amsterdam

    Google Scholar 

  3. Tao D, Li X, Wu X, Maybank SJ (2009) Geometric mean for subspace selection. IEEE Trans Pattern Anal Mach Intell 31(2):260–274

    Article  Google Scholar 

  4. Albus JS (2010) A model of computation and representation in the brain. Inf Sci 180(9):1519–1554

    Article  Google Scholar 

  5. Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA et al (2017) Overcoming catastrophic forgetting in neural networks. Proc Natl Acad Sci USA 114(13):3521–3526

    Article  MathSciNet  Google Scholar 

  6. Dean T (2005) A computational model of the cerebral cortex. In: National conference on artificial intelligence. AAAI Press, pp 938–943

  7. Norman KA, O’Reilly RC (2003) Modeling hippocampal and neocortical contributions to recognition memory: a complementary-learning-systems approach. Psychol Rev 110(4):611–46

    Article  Google Scholar 

  8. Hattori M (2014) A biologically inspired dual-network memory model for reduction of catastrophic forgetting. Neurocomputing 134:262–268

    Article  Google Scholar 

  9. Sakurai N, Hattori M, Ito H (2002) SOM associative memory for temporal sequences. In: International joint conference on neural networks, vol 1. IEEE, pp 950–955

  10. Grossberg S (2013) Adaptive resonance theory: how a brain learns to consciously attend, learn, and recognize a changing world. Neural Netw 37(1):1–47

    Article  Google Scholar 

  11. Yu J, Rui Y, Chen B (2014) Exploiting click constraints and multi-view features for image re-ranking. IEEE Trans Multimed 16(1):159–168

    Article  Google Scholar 

  12. Yu J, Tao D, Wang M, Rui Y (2015) Learning to rank using user clicks and visual features for image retrieval. IEEE Trans Cybern 45(4):767–779

    Article  Google Scholar 

  13. Yu J, Rui Y, Tao D (2014) Click prediction for web image reranking using multimodal sparse coding. IEEE Trans Image Process 23(5):2019–32

    Article  MathSciNet  Google Scholar 

  14. Hong C, Yu J, Tao D, Wang M (2015) Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval. IEEE Trans Ind Electron 62(6):3742–3751

    Google Scholar 

  15. Su Y (2017) Robust video face recognition under pose variation. Neural Process Lett 1–15. https://doi.org/10.1007/s11063-017-9649-8

    Article  Google Scholar 

  16. Liu W, Tao D, Cheng J, Tang Y (2013) Multiview hessian discriminative sparse coding for image annotation. Comput Vis Image Underst 118(1):50–60

    Google Scholar 

  17. Tao D, Li X, Wu X, Maybank SJ (2007) General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans Pattern Anal Mach Intell 29(10):1700–1715

    Article  Google Scholar 

  18. Yu J, Zhang B, Kuang Z, Lin D, Fan J (2017) Iprivacy: image privacy protection by identifying sensitive objects via deep multi-task learning. IEEE Trans Inf Forensics Secur 12(5):1005–1016

    Article  Google Scholar 

  19. Yu J, Yang X, Gao F, Tao D (2016) Deep multimodal distance metric learning using click constraints for image ranking. IEEE Trans Cybern PP(99):1–11

    Google Scholar 

  20. Hong C, Yu J, Wan J, Tao D, Wang M (2015) Multimodal deep autoencoder for human pose recovery. IEEE Trans Image Process 24(12):5659–5670

    Article  MathSciNet  Google Scholar 

  21. Palm G (2013) Neural associative memories and sparse coding. Neural Netw 37:165–171

    Article  Google Scholar 

  22. Rolls ET (2016) Cerebral cortex: principles of operation. Oxford University Press, Oxford

    Book  Google Scholar 

  23. Rolls ET, Treves A (1998) Neural networks and brain function. Oxford University Press, Oxford

    Google Scholar 

  24. O’Reilly RC, Munakata Y, Frank MJ, Hazy TE (2012) Computational cognitive neuroscience, 1st edn. Wiki Book, New York

    Google Scholar 

  25. Yang J, Yu K, Gong Y, Huang T (2009) Linear spatial pyramid matching using sparse coding for image classification. In: IEEE conference on computer vision and pattern recognition (CVPR 2009). IEEE, pp 1794–1801

  26. Wang Y, Deng L (2016) Modeling object recognition in visual cortex using multiple firing k-means and non-negative sparse coding. Signal Process 124:198–209

    Article  Google Scholar 

  27. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  28. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  29. Liu W, Zha ZJ, Wang Y, Lu K, Tao D (2016) p-Laplacian regularized sparse coding for human activity recognition. IEEE Trans Ind Electron 63(8):5120–5129

    Google Scholar 

  30. O’Reilly RC, Munakata Y (2000) Computational explorations in cognitive neuroscience: understanding the mind by simulating the brain. MIT Press, Cambridge

    Google Scholar 

  31. Ketz N, Morkonda SG, O’Reilly RC (2013) Theta coordinated error-driven learning in the hippocampus. PLoS Comput Biol 9(6):e1003067

    Article  Google Scholar 

  32. Amis G, Carpenter G (2009) Self-supervised ARTMAP. Neural Netw 23:265–282

    Article  Google Scholar 

  33. Carpenter GA, Gaddam SC (2010) Biased ART: a neural architecture that shifts attention toward previously disregarded features following an incorrect prediction. Neural Netw 23:435–451

    Article  Google Scholar 

  34. Shen F, Hasegawa O (2006a) An incremental network for on-line unsupervised classification and topology learning. Neural Netw 19:90–106

    Article  Google Scholar 

  35. Sadeghi BHM (2000) A BP-neural network predictor model for plastic injection molding process. J Mater Process Technol 103(3):411–416

    Article  MathSciNet  Google Scholar 

  36. Vehtari A, Lampinen J (2000) Bayesian MLP neural networks for image analysis. Pattern Recognit Lett 21(13–14):1183–1191

    Article  Google Scholar 

  37. Chang C, Lin C (2011) LIB-SVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27

    Article  Google Scholar 

  38. Norman KA (2010) How hippocampus and cortex contribute to recognition memory: revisiting the complementary learning systems model. Hippocampus 20(11):1217–1227

    Article  Google Scholar 

  39. Vanhoucke V, Senior A, Mao MZ (2011) Improving the speed of neural networks on CPUs. In: Proc. deep learning and unsupervised feature learning NIPS workshop, vol 1, pp 1– 4

  40. Werner GÁ, Hanka L (2016) Tuning an artificial neural network to increase the efficiency of a fingerprint matching algorithm. In: 2016 IEEE 14th international symposium on applied machine intelligence and informatics (SAMI). IEEE, pp 105–109

  41. Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz MA et al (2016) Eie: efficient inference engine on compressed deep neural network. Acm Sigarch Comput Archit News 44(3):243–254

    Article  Google Scholar 

Download references

Acknowledgements

The paper is funded by the National Natural Science Foundation of P. R. China (No. 61671480) and the Natural Science Foundation of Shandong Provence (No. ZR2017MF069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjiang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Gao, M. & Wang, Y. Increment Learning and Rapid Retrieval of Visual Information Based on Pattern Association Memory. Neural Process Lett 48, 1597–1610 (2018). https://doi.org/10.1007/s11063-018-9789-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-018-9789-5

Keywords

Navigation