Skip to main content

Advertisement

Log in

Taurine Prevents Passive Avoidance Memory Impairment, Accumulation of Amyloid-β Plaques, and Neuronal Loss in the Hippocampus of Scopolamine-Treated Rats

  • Published:
Neurophysiology Aims and scope

One of the hallmarks of Alzheimer’s disease (AD) is extracellular deposition of amyloid-β peptides, particularly in the hippocampus. Despite the antioxidant properties of taurine, its neuroprotective potential against amyloid-β accumulation in scopolamine-induced AD model remain unclear. In such a model, we aimed to assess the effects of taurine on passive avoidance memory impairment, accumulation of congophilic amyloid-β plaques, and neuronal density in the rat hippocampus. Rats, except the control group, were i.p. injected with 3 mg/kg scopolamine. The pretreated and treated groups were also injected with taurine (25, 50, or 100 mg/kg/day, i.p.) for 14 days before or after scopolamine introduction. All rats (except the control group) were tested for the passive avoidance reaction 24 h after the last drug injection. For histological analysis, hippocampal sections were stained with Congo red and cresyl violet. Administration of taurine for 14 days, both before and after scopolamine injection, significantly alleviated passive avoidance memory impairment. Pretreatment with taurine in any of the mentioned dosages significantly decreased the number of congophilic amyloid-β plaques in the rat hippocampus, including the CA3 area. Taurine also reduced scopolamine-induced neuronal loss in the hippocampus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Choi, S. Aid, L. Caracciolo, et al., “Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer’s disease,” J. Neurochem.,124, 59–68 (2013).

    Article  CAS  Google Scholar 

  2. P. Xu, K. Wang, C. Lu, et al., “Protective effects of linalool against amyloid beta-induced cognitive deficits and damages in mice,” Life Sci.,174, 21–27 (2017).

    Article  CAS  Google Scholar 

  3. H. Javed, A. Khan, K. Vaibhav, et al., “Taurine amelio- rates neurobehavioral, neurochemical and immunohistochemical changes in sporadic dementia of Alzheimer’s type (SDAT) caused by intracerebroventricular streptozotocin in rats,” Neurol. Res.,34, 2181–2192 (2013).

    Google Scholar 

  4. X. Li, H. F. Yuan, Q. K. Quan, et al., “Scavenging effect of Naoerkang on amyloid beta-peptide deposition in the hippocampus in a rat model of Alzheimer’s disease,” Chin. J. Integr. Med.,17, 847–853 (2011).

    Article  Google Scholar 

  5. P. Goverdhan, A. Sravanthi, and T. Mamatha, “Neuroprotective effects of meloxicam and selegiline in scopolamine-induced cognitive impairment and oxidative stress,” Int. J. Alzheimers Dis.,2012, 974013; doi: https://doi.org/10.1155/2012/974013. (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. M. C. Chung, P. Malatesta, P. L. Bosquesi, et al., “Advances in drug design based on the amino acid approach: Taurine analogues for the treatment of CNS diseases,” Pharmaceuticals,5, 1128–1146 (2012).

    Article  CAS  Google Scholar 

  7. Q. Sun, H. Hu, W. Wang, et al., “Taurine attenuates amyloid β1-42-induced mitochondrial dysfunction by activating of SIRT1 in SK-N-SH cells,” Biochem. Biophys. Res. Commun.,447, 485–489 (2014).

    Article  CAS  Google Scholar 

  8. A. Blokland, A. Sambeth, J. Prickaerts, and W. J.Riedel, “Why an M1 antagonist could be a more selective model for memory impairment than scopolamine,” Front. Neurol.,7, 167 (2016).

    Article  Google Scholar 

  9. D. Y. Choi, Y. J. Lee, S. Y. Lee, et al., “Attenuation of scopolamine-induced cognitive dysfunction by obovatol,” Arch. Pharm. Res.,35, 1279–1286 (2012).

    Article  CAS  Google Scholar 

  10. M. Jahanshahi, E. G. Nickmahzar, and F. Babakordi, “The effect of Ginkgo biloba extract on scopolamineinduced apoptosis in the hippocampus of rats,” Anat. Sci. Int.,88, 217–222 (2013).

    Article  CAS  Google Scholar 

  11. G. Caletti, D. B. Olguins, E. F. Pedrollo, et al., “Antidepressant effect of taurine in diabetic rats,” Amino Acids,43, 1525–1533 (2012).

    Article  CAS  Google Scholar 

  12. S. Seifhosseini, M. Jahanshahi, A. Moghimi, and N. S. Aazami, “The effect of scopolamine on avoidance memory and hippocampal neurons in male wistar rats,” Basic Clin. Neurosci.,3, 9–15 (2011).

    Google Scholar 

  13. S. Mahakizadeh, M. Jahanshahi, K. Haidari, and M. Shahbazi,“Dopamine receptors gene expression in male rat hippocampus after administration of MDMA (Ecstasy),” Int. J. Morphol.,33, 301–308 (2015).

    Article  Google Scholar 

  14. G. Paxinos, and C. Watson, The Rat Brain in Stereotaxic Coordinates, Academic Press, San Diego (2007).

    Google Scholar 

  15. D. M. Wilcock, M.N. Gordon, and D. Morgan, “Quantification of cerebral amyloid angiopathy and parenchymal amyloid plaques with Congo Red histochemical stain,” Nat. Protoc.,1, 1591–1595 (2006).

    Article  CAS  Google Scholar 

  16. M. Jahanshahi, K. Haidari, S. Mahaki-Zadeh, et al., “Effects of repeated administration of 3,4-methylenedioxymethamphetamine (MDMA) on avoidance memory and cell density in rats’ hippocampus,” Basic Clin. Neurosci.,4, 57–63 (2013).

    PubMed  PubMed Central  Google Scholar 

  17. E. Nikmahzar, M. Jahanshahi, A. Ghaemi, et al., “Hippocampal serotonin-2A receptor-immunoreactive neurons density increases after testosterone therapy in the gonadectomized male mice,” Anat. Cell Biol.,49, 259–272 (2016).

    Article  Google Scholar 

  18. M. Jahanshahi, Y. Sadeghi, and A. Hosseini, “Estimation of astrocyte number in different subfield of rat hippocampus,” Pak. J. Biol. Sci.,9, 1595–1597 (2006).

    Article  Google Scholar 

  19. J. J. Buccafusco,“The revival of scopolamine reversal for the assessment of cognitive-enhancing drugs,” in: Methods of Behavior Analysis in Neuroscience, J. J. Buccafusco (ed.), CRC Press, Boca Raton (2009), pp. 230–329.

  20. A. C. G. Souza, C. A. Bruning, C. I. Acker, et al., “2-Phenylethynyl- butyltellurium enhances learning and memory impaired by scopolamine in mice,” Behav. Pharmacol.,24, 249–254 (2013).

    Article  CAS  Google Scholar 

  21. J. M. Gutierres, F. B. Carvalho, M. R. C. Schetinger, et al., “Neuroprotective effect of anthocyanins on acetylcholinesterase activity and attenuation of scopolamineinduced amnesia in rats,” Int. J. Dev. Neurosci.,33, 88–97 (2014).

    Article  CAS  Google Scholar 

  22. J. S. Lee, S. S. Hong, H. G. Kim, et al.,“Gongjin-dan enhances hippocampal memory in a mouse model of scopolamine-induced amnesia,” PLoS One,11, e0159823 (2016).

    Article  Google Scholar 

  23. A. El Idrissi, “Taurine improves learning and retention in aged mice,” Neurosci. Lett.,436, 19–22 (2008).

    Article  Google Scholar 

  24. H. Y. Kim, H. V. Kim, J. H. Yoon, et al., “Taurine in drinking water recovers learning and memory in the adult APP/PS1 mouse model of Alzheimer’s disease,” Sci. Rep.,4, 7467 (2014).

    Article  Google Scholar 

  25. S. F. El-Sisi, “The possible protective effect of mefenamic acid, taurine, soy-phytoestrogen extract against scopolamine induced Alzheimer disease in rat,” New York Sci. J.,4, 89–101 (2011).

    Google Scholar 

  26. M. G. Akande, Y. O. Aliu, S. F. Ambali, and J. O. Ayo, “Taurine mitigates cognitive impairment induced by chronic co-exposure of male Wistar rats to chlorpyrifos and lead acetate,” Environ. Toxicol. Pharmacol.,37, 315–325 (2014).

    Article  CAS  Google Scholar 

  27. I. A. Adedara, A. O. Abolaji, U. F. Idris, et al., “Neuroprotective influence of taurine on fluorideinduced biochemical and behavioral deficits in rats,” Chem. Biol. Interact.,261, 1–10 (2017).

    Article  CAS  Google Scholar 

  28. K. Ito, M. Arko, T. Kawaguchi, et al., “The effect of subacute supplementation of taurine on spatial learning and memory,” Exp. Anim.,58, 175–180 (2009).

    Article  CAS  Google Scholar 

  29. K. Ito, M. Arko, T. Kawaguchi, et al., “Intracerebroventricular administration of taurine impairs learning and memory in rats,” Nutr. Neurosci.,15, 70–77 (2012).

    Article  CAS  Google Scholar 

  30. K. M. Rodrigue, K. M. Kennedy, M. D. Devous, et al., “β-Amyloid burden in healthy aging regional distribution and cognitive consequences,” Neurology,78, 387–395 (2012).

    Article  CAS  Google Scholar 

  31. S. W. Bihaqi, A. P. Singh, and M. Tiwari, “Supplementation of Convolvulus pluricaulis attenuates scopolamine-induced increased tau and amyloid precursor protein (AβPP) expression in rat brain,” Ind. J. Pharmacol.,44, 593–598 (2012).

    Article  Google Scholar 

  32. I. Santa-María, F. Hernández, F. J. Moreno, and J. Avila, “Taurine, an inducer for tau polymerization and a weak inhibitor for amyloid-β-peptide aggregation,” Neurosci. Lett.,429, 91–94 (2007).

    Article  Google Scholar 

  33. P. R. Louzada, L. A. C. Paula, D. L. Mendonca-Silva, et al., “Taurine prevents the neurotoxicity of betaamyloid and glutamate receptor agonists: activation of GABA receptors and possible implications for Alzheimer’s disease and other neurological disorders,” FASEB J.,18, 511–518 (2004).

    Article  CAS  Google Scholar 

  34. A. C. Paula-Lima, F. G. De Felice, J. Brito-Moreira, and S. T. Ferreira, “Activation of GABAA receptors by taurine and muscimol blocks the neurotoxicity of β-amyloid in rat hippocampal and cortical neurons,” Neuropharmacology,49, 1140–1148 (2005).

    Article  CAS  Google Scholar 

  35. F. Gervais, J. Paquette, C. Morissette, et al., “Targeting soluble Aβ peptide with Tramiprosate for the treatment of brain amyloidosis,” Neurobiol. Aging,28, 537–547 (2007).

    Article  CAS  Google Scholar 

  36. P. E. Fraser, J. T. Nguyen, D. T. Chin, and D. A. Kirschner, “Effects of sulfate ions on Alzheimer β/A4 peptide assemblies: implications for amyloid fibrilproteoglycan interactions,” J. Neurochem.,59, 1531–1540 (1992).

    Article  CAS  Google Scholar 

  37. R. Hernández-Benítez, H. Pasantes-Morales, I. T. Saldaña, and G. Ramos-Mandujano, “Taurine stimulates proliferation of mice embryonic cultured neural progenitor cells,” J. Neurosci. Res.,88, 1673–1681 (2010).

    PubMed  Google Scholar 

  38. M. C. Shivaraj, G. Marcy, G. Low, et al., “Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain,” PLoS One,7, e42935 (2012).

    Article  CAS  Google Scholar 

  39. R. Hernández-Benítez, S. D. Vangipuram, G. Ramos-Mandujano, et al., “Taurine enhances the growth of neural precursors derived from fetal human brain and promotes neuronal specification,” Dev. Neurosci.,35, 40–49 (2013).

    Article  Google Scholar 

  40. E. Gebara, F. Udry, S. Sultan, and N. Toni, “Taurine increases hippocampal neurogenesis in aging mice,” Stem Cell Res.,14, 369–379 (2015).

    Article  CAS  Google Scholar 

  41. G. Ramos-Mandujano, R. Hernández-Benítez, and H. Pasantes-Morales, “Multiple mechanisms mediate the taurine-induced proliferation of neural stem/progenitor cells from the subventricular zone of the adult mouse,” Stem Cell Res.,12, 690–702 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jahanshahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorgani, S., Jahanshahi, M. & Elyasi, L. Taurine Prevents Passive Avoidance Memory Impairment, Accumulation of Amyloid-β Plaques, and Neuronal Loss in the Hippocampus of Scopolamine-Treated Rats. Neurophysiology 51, 171–179 (2019). https://doi.org/10.1007/s11062-019-09810-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-019-09810-y

Keywords

Navigation