Skip to main content
Log in

Effects of Brain Ischemic Preconditioning on Cognitive Decline and Motor Incoordination in 3-Nitropropionic Acid-Intoxicated Rats: Probable Mechanisms of Action

  • Published:
Neurophysiology Aims and scope

The paradigm of brain ischemic preconditioning (BIP) rendering protection from succeeding chemical insults has not been established in vivo. Systemic administration of 3-nitropropionic acid (3-NP) damages cerebral basal ganglia by inducing a mitochondrial dysfunction: this serves as a translational model for Huntington’s disease. We tested the potential of BIP against the neurotoxic effects of 3-NP and investigated the role of glycogen synthase kinase 3-beta (GSK-3β) and heat shock protein-72 (HSP72) signalling in the mentioned model. Male Wistar rats (n = 8; 180-200 g) were randomly assigned to seven groups, sham, BIP, 3NP, BIP+3NP, LiCl+BIP+3NP, Que (quercetin) +BIP+3NP, and LiCl+Que+BIP+3NP. Lithium chloride, 3-NP, and quercetin were administered in the doses of 40, 35, and 4 mg/kg i.p., respectively. Deficits in motor coordination and memory retention were assessed using the balance beam, accelerating rotarod, gait analysis, Morris water maze, and elevated plus maze. Brain biochemistry was assessed for the markers of lipid peroxidation and nitric oxide. The findings revealed noticeable differences in the measured indices in the examined animal groups vs. the sham group (P < 0.05 for motor coordination, memory retention, and brain biochemistry). A strong negative correlation between the rotarod performance of animals and their brain MDA levels was found. The findings reveal that BIP provides behavioral and biochemical recuperation against 3NP-induced neurodegeneration, and this is related to downregulation of GSK -3β and upregulation of HSP72.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Durukan and T. Tatlisumak, “Preconditioning-induced ischemic tolerance: a window into endogenous gearing for cerebroprotection,” Exp. Transl. Stroke Med., 2, No. 2 (2010).doi: https://doi.org/10.1186/2040-7378-2-2.

  2. A. Shaldubina, G. Agam, and R. H. Belmaker, “The mechanism of lithium action: state of the art, ten years later,” Prog. Neuropsychopharmacol. Biol. Psychiat., 25, No. 4, 855–866 (2001).

    Article  CAS  Google Scholar 

  3. P. He, Y. Y. Fan, L. Y. Zhang, et al., “Effect of endogenous histamine on ischemic preconditioning induced cerebral ischemic tolerance,” Zhejiang Da Xue Xue Bao Yi Xue Ban, 38, No. 6, 579–583 (2009).

    CAS  PubMed  Google Scholar 

  4. N. S. Thaddeus, “Animal models of global cerebral ischemia,” in Acute Stroke, Bench to Bedside, A. Bhardwaj, et al. (eds.), Informa Healthcare, New York (2006), pp. 275–292.

    Google Scholar 

  5. V. Borlongan, T. K. Koutouzis, T. S. Randall, et al., “Systemic 3-nitropropionic acid: Behavioral deficits and striatal damage in adult rats,” Brain Res. Bull., 36, No. 6, 549–556 (1995).

    Article  CAS  Google Scholar 

  6. R. J. McDonald and N. M. White, “Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus,” Behav. Neural Biol., 61, No. 3, 260–270 (1994).

    Article  CAS  Google Scholar 

  7. K. Ishiguro, A. Shiratsuchi, S. Sato, et al., “Glycogen synthase kinase 3β is identical to tau protein kinase I generating several epitopes of paired helical filaments,” FEBS Lett., 325, No. 3, 167–172 (1993).

    Article  CAS  Google Scholar 

  8. R. J. Crowder and R. S. Freeman, “Glycogen synthase kinase-3β activity is critical for neuronal death caused by inhibiting phosphatidylinositol 3-kinase or Akt but not for death caused by nerve growth factor withdrawal,” J. Biol.Chem., 275, No. 44, 34266–34271 (2000).

    Article  CAS  Google Scholar 

  9. P. Mendez, I. Azcoitia, and L. M. Garcia-Segura, “Interdependence of oestrogen and insulin-like growth factor-I in the brain: potential for analysing neuroprotective mechanisms,” J. Endocrinol., 185, No. 1, 11–17 (2005).

    Article  CAS  Google Scholar 

  10. O. Varea, M. A. Arevalo, J. J. Garrido, et al., “Interaction of estrogen receptors with insulin-like growth factor-I and Wnt signaling in the nervous system,” Steroids, 75, Nos. 8/9, 565–569 (2010).

    Article  CAS  Google Scholar 

  11. J. R. Woodgett, “Molecular cloning and expression of glycogen synthase kinase-3/factor A,” EMBO J., 9, No. 8, 2431–2438 (1990).

    Article  CAS  Google Scholar 

  12. C. Hedgepeth, L. J. Conrad, J. Zhang, et al., “Activation of the Wnt signaling pathway: a molecular mechanism for lithium action,” Dev. Biol., 185, No. 1, 82–91 (1997).

    Article  CAS  Google Scholar 

  13. F. R. Lucas, R. G. Goold, P. R. Gordon-Weeks, et al., “Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium,” J. Cell Sci., 111, Part 10, 1351–1361 (1998).

    CAS  PubMed  Google Scholar 

  14. V. Stambolic, L. Ruel, and J. R. Woodgett, “Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells,” Current Biol., 6, No, 12, 1664–1668 (1996).

    Article  CAS  Google Scholar 

  15. H. N. Yadav, M. Singh, and P. L. Sharma, “Pharmacological inhibition of GSK-3β produces late phase of cardioprotection in hyperlipidemic rat: possible involvement of HSP72,” Mol. Cell. Biochem., 369, Nos. 1/2, 227–233 (2012).

    Article  CAS  Google Scholar 

  16. F. Zhang, C. J. Phiel, L. Spece, et al., “Inhibitory phos- phorylation of glycogen synthase kinase-3 (GSK-3) in response to lithium. Evidence for autoregulation of GSK-3,” J. Biol. Chem., 278, No. 35, 33067–33077 (2003).

    Article  CAS  Google Scholar 

  17. V. L. Gabai, A. B. Meriin, D. D. Mosser, et al., “Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermo-tolerance,” J. Biol. Chem.,272, No. 29, 18033–18037 (1997).

    Article  CAS  Google Scholar 

  18. A. R.Stankiewicz, G. Lachapelle, C. P. Foo, et al., “Hsp70 inhibits heat-induced apoptosis upstream of mitochondria by preventing Bax translocation,” J. Biol. Chem.,280, No. 46, 38729–38739 (2005).

    Article  CAS  Google Scholar 

  19. M. Tanaka, H. Fujiwara, K. Yamasaki, et al., “Expression of heat shock protein after ischemic preconditioning in rabbit hearts,” Jpn. Circ. J., 62, No. 7, 512–516 (1998).

    Article  CAS  Google Scholar 

  20. J. Jakubowicz-Gil, B. Pawlikowska-Pawlega, T. Piersiak, et al., “Quercetin suppresses heat shock-induced nuclear translocation of Hsp72,” Folia Histochem. Cytobiol., 43, No. 3, 123–128 (2005).

    CAS  PubMed  Google Scholar 

  21. N. Nagai,A. Nakai, and K. Nagata, “Quercetin suppresses heat shock response by down regulation of HSF1,” Biochem. Biophys. Res. Commun., 208, No. 3, 1099–10105 (1995).

    Article  CAS  Google Scholar 

  22. A. Debes, M. Oerding, R. Willers, et al., “Sensitization of human Ewing’s tumour cells to chemotherapy and heat treatment by the bioflavonoid quercetin,” Anticancer Res., 23, No. 4, 3359–3366 (2003).

    CAS  PubMed  Google Scholar 

  23. A. Sharma and R. Goyal, “Experimental brain ischemic preconditioning: a concept to putative targets,” CNS Neurol. Disord. Drug Targets, 15, No. 4, 489–495 (2016).

    Article  CAS  Google Scholar 

  24. L. B. Goldstein and J. N. Davis, “Beam-walking in rats: studies towards developing an animal model of functional recovery after brain injury,” J. Neurosci. Methods.,31, No. 2, 101–107 (1990).

    Article  CAS  Google Scholar 

  25. M. Sharma and Y. K. Gupta, “Chronic treatment with trans-resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats,” Life Sci., 71, No. 21, 2489–2498 (2002).

    Article  CAS  Google Scholar 

  26. E. D. Wills, “Mechanism of lipid peroxidase formation in animal tissue,” Biochem. J., 99, No. 3, 667–676 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. L. C. Green, D. A. Wagner, J. Glogowski, et al., “Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids,” Anal. Biochem., 126, No. 1, 131–138 (1982).

    Article  CAS  Google Scholar 

  28. K. Kitagawa, M. Matsumoto, K. Kuwabara, et al., “‘Ischemic tolerance’ phenomenon detected in various brain regions,” Brain Res., 561, No. 2, 203–211 (1991).

    Article  CAS  Google Scholar 

  29. P. C. Severino, A. Muller Gdo, S. Vandresen-Filho, and C. I. Tasca, “Cell signaling in NMDA preconditioning and neuroprotection in convulsions induced by quinolinic acid,” Life Sci., 89, Nos. 15/16, 570–576 (2011).

    Article  CAS  Google Scholar 

  30. K. B. Shpargel, W. Jalabi, Y. Jin, et al., “Preconditioning paradigms and pathways in the brain,” Cleve. Clin. J. Med., 75, Suppl. 2, S77–S82 (2008).

    Article  Google Scholar 

  31. T. A. Alston, L. Mela, and H. J. Bright, “3-Nitropropionate, the toxic substance of Indigofera, is a suicide inactivator of succinate dehydrogenase,” Proc. Natl. Acad. Sci. USA, 74, No. 9, 3767–3771 (1977).

    Article  CAS  Google Scholar 

  32. C. J. Coles, D. E. Edmondson, and T. P. Singer, “Inactivation of succinate dehydrogenase by 3-nitropropionate,” J. Biol. Chem.,254, No. 12, 5161–5167 (1979).

    CAS  PubMed  Google Scholar 

  33. N. Bizat, J. M. Hermel, S. Humbert, et al., “In vivo calpain/caspase cross-talk during 3-nitropropionic acidinduced striatal degeneration: implication of a calpainmediated leavage of active caspase-3,” J. Biol. Chem., 278, No. 44, 43245–43253 (2003).

    Article  CAS  Google Scholar 

  34. J. B. Schulz, R. T. Matthews, B. G. Jenkins, et al., “Blockade of neuronal nitric oxide synthase protects against excitotoxicity in vivo,” J. Neurosci., 15, No. 12, 8419–8429 (1995).

    Article  CAS  Google Scholar 

  35. E. Brouillet, C. Jacquard, N. Bizat, and D. Blum, “3-Nitropropionic acid: a mitochondrial toxin to uncover physiopathological mechanisms underlying striatal degeneration in Huntington’s disease,” J. Neurochem., 95. No. 6, 1521–1540 (2005).

    Article  CAS  Google Scholar 

  36. S. Y. Shu, Y. M. Wu, X. M. Bao, and B. Leonard, “Interactions among memory-related centers in the brain,” J. Neurosci. Res., 71, No. 5, 609–616 (2003).

    Article  CAS  Google Scholar 

  37. S. Y. Shu, G. Jiang, Q. Y. Zeng, et al., “The marginal division of the striatum and hippocampus has different role and mechanism in learning and memory,” Mol. Neurobiol., 51, No. 2, 827–839 (2015).

    Article  CAS  Google Scholar 

  38. B. de Araújo Herculano, S. Vandresen-Filho, W. C. Martins, et al., “NMDA preconditioning protects against quinolinic acid-induced seizures via PKA, PI3K and MAPK/ErK signaling pathways,” Behav. Brain Res., 219. No. 1, 92–97 (2011).

    Article  Google Scholar 

  39. T. P. Obrenovitch, “Molecular physiology of preconditioning- induced brain tolerance to ischemia,” Physiol. Rev., 88, No. 1, 211–247 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Goyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Goyal, R. Effects of Brain Ischemic Preconditioning on Cognitive Decline and Motor Incoordination in 3-Nitropropionic Acid-Intoxicated Rats: Probable Mechanisms of Action. Neurophysiology 51, 160–170 (2019). https://doi.org/10.1007/s11062-019-09809-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-019-09809-5

Keywords

Navigation