Skip to main content
Log in

Modulatory Effects of the Glucocorticoid and Opioid Systems on Anxiety-Related Behavior in Young and Mature Rats

  • Published:
Neurophysiology Aims and scope

Considering that there is limited information on interaction between age and effects of the opioid system and glucocorticoids in determination of the anxiety level, we examined the influences of 1 mg/kg dexamethasone and 20 mg/kg RU486 (as an agonist and an antagonist of glucocorticoid receptors), and also of 5 mg/kg morphine and 20 mg/kg naloxone (as an agonist and an antagonist of the opioid system) on the above level in young and mature male Wistar rats. The percentage of time in the open arms in the plus-maze test was evaluated as an index of anxiety behavior, and the percentage of number of entries in the closed arms was measured as an index of locomotor activity. Morphine (5 mg/kg) and dexamethasone (1 mg/kg) exerted anxiolytic effects in both young and mature rats, while these agents reduced locomotor activity only in young animals. RU486 could prevent the anxiolytic effect of morphine, and the anxiolytic effect of dexamethasone was inhibited by naloxone in young animals; this, however, was not observed in mature rats. Thus, there is an interactive effect between glucocorticoids and the opioid system in mediation of anxiety, and the respective events are age-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. Barr and G. L. Forster, “Serotonergic neurotransmission in the ventral hippocampus is enhanced by corticosterone and altered by chronic amphetamine treatment,” Neuroscience, 182, 105-114 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. G. P. Chrousos, “Stressors, stress, and neuroendocrine integration of the adaptive response,” Ann. N.Y. Acad. Sci., 851, 311-335 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. C. Tsigos and G. Chrousos, “Hypothalamic-pituitaryadrenal axis, neuroendocrine factors and stress,” J. Psychosom. Res., 53, No. 4, 865-871 (2002).

    Article  PubMed  Google Scholar 

  4. M. P. Boyle, B. J. Kolber, S. Vogt, et al., “Forebrain glucocorticoid receptors modulate anxiety-associated locomotor activation and adrenal responsiveness,” J. Neurosci., 26, No. 7, 1971-1978 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. L. Velisek, “Prenatal exposure to betamethasone decreases anxiety in developing rats: hippocampal neuropeptide Y as a target molecule,” Neuropsychopharmacology, 31, No. 10, 2140-2149 (2006).

    CAS  PubMed  Google Scholar 

  6. A. A. Vafaei, A. Rashidi-pour, and A. A. Taherianpak, “Peripheral injection of dexamethasone modulates anxiety related behaviors in mice: an interaction with opioidergic neurons,” Pak. J. Pharm. Sci., 21 No. 3, 285-289 (2008).

    PubMed  Google Scholar 

  7. R. Anand, K. Gulati, and A. Ray, “Pharmacological evidence for the role of nitric oxide in the modulation of stress-induced anxiety by morphine in rats,” Eur. J. Pharmacol., 676, Nos. 1/3, 71-74 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. A. Rezayof, S. Assadpour, and S. Alijanpour, “Morphineinduced anxiolytic-like effect in morphine-sensitized mice: involvement of ventral hippocampal nicotinic acetylcholine receptors,” Pharmacol. Biochem. Behav., 103, No. 3,460-466 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. M. Torabi, M. Kesmati, H. E. Harooni, and H. Najafzadehvarzi, “Effect of intra CA1 and intraperitoneal administration of opioid receptor modulating agents on the anxiolytic properties of nano and conventional ZnO in male rats,” Cell J., 16, No. 2, 163-170 (2014).

    PubMed  PubMed Central  Google Scholar 

  10. R. N. Pechnich, “Effects of opioids on the hypothalamic pituitary adrenal axis,” Annu. Rev. Pharmacol. Toxicol., 32,353-382 (1993).

    Article  Google Scholar 

  11. D. M. Ignar and C. M. Kuhn, “Effects of specific Mu and Kappa opiate tolerance and abstinence on hypothalamopituitary-adrenal axis secretion in the rat,” J. Pharmacol. Exp. Ther., 255, No. 3, 1287-1295 (1990).

    CAS  PubMed  Google Scholar 

  12. G. Lim, S. Wang, Q. Zeng, et al., “Spinal glucocorticoid receptors contribute to development of morphine tolerance in rats,” Anesthesiology, 102, No. 4, 832-837 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. M. V. Millanes, M. L. Laorden, M. Chapleur-Chateau, and A. Bulert, “Differential regulation of corticotrophinreleasing factor and vasopressin in discrete brain regions after morphine administration: correlation with hypothalamic noradrenergic activity and pituitary adrenal response,” Naunyn. Schmiedebergs. Arch. Pharmacol., 356, No. 5, 603-610 (1997).

    Article  Google Scholar 

  14. B. Nock, T. Cicero, and M. Wich, “Chronic morphine increases the pituitary-adrenocortical response of juvenile rats to mild stress,” Pharmacol., Biochem., Behav., 80, No. 1, 77-85 (2005).

    Article  CAS  Google Scholar 

  15. K. Bennett, K. Manassis, S. D. Walter, et al., “Cognitive behavioral therapy age effects in child and adolescent anxiety: an individual patient data metaanalysis,” Depress. Anxiety, 30, No. 9, 829-841 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. P. Boguszewski and J. Zagrodzka, “Emotional changes related to age in rats – a behavioral analysis,” Behav. Brain Res., 133, No. 2, 323-332 (2002).

    Article  PubMed  Google Scholar 

  17. S. Koukouli, V. Pattakou-Parasyri, and A. E. Kalaitzaki, “Self-reported aging anxiety in Greek students, health care professionals, and community residents: A comparative study,” Gerontologist, 54, No. 2, 201-210 (2013).

    Article  PubMed  Google Scholar 

  18. J. M. Bessa, M. Olivera, J. J. Cerqueira, et al., “Agerelated qualitative shift in emotional behavior: Paradoxical findings after re-exposure of rats in the elevated-plus-maze,” J. Behav. Brain Res., 162, No. 1, 135-142 (2005).

    Article  CAS  Google Scholar 

  19. P. J. Kamphuis, G. Croiset, J. M. Bakker, et al., “Neonatal dexamethasone treatment affects social behavior of rats in later life,” Neuropharmacology, 47, No. 3, 461-474 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. G. Lim, S. Wang, Q. Zeng, et al., “Expression of spinal NMDA receptor and PKCgamma after chronic morphine is regulated by spinal glucocorticoid receptor,” J. Neurosci., 25, No. 48, 11145-11154 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. L. Uriguen, B. Fernandez, E. Romerto, et al., “Effects of 14-methoxymetopon, a potent opioid agonist, on the responses to the tail electric stimulation test and plusmaze activity in male rats: Neuroendocrine correlates,” Brain Res. Bull., 15; 57, No. 5, 661-666 (2002).

  22. L. Laue, G. P. Chrousos, D. L. Loriaux, et al., “The antiglucocorticoid and antiprogestin steroid RU 486 suppresses the adrenocorticotropin response to ovine corticotropin releasing hormone in man,” J. Clin. Endocrinol. Metab., 66, No. 2, 290-293 (1988).

    Article  CAS  PubMed  Google Scholar 

  23. S. Ferguson and E. Gray, “Aging effects on elevated plus-maze behavior in spontaneously hypertensive, Wistar-Kyoto and Sprague-Dawley male and female rats,” Physiol. Behav., 85, No. 5, 621-628 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. A. E. Arrant, N. L. Schramm-Sapyta, and C. M. Kuhn, “Use of the light/dark test for anxiety in adult and adolescent male rats,” Behav. Brain Res., 256, 119-127 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  25. E. Mikics, B. Barsy, B. Barsvari, and J. Haller, “Behavioral specificity of non-genomic glucocorticoid effects in rats: Effects on risk assessment in the elevated plus-maze and open-field,” Horm. Behav., 48, No. 2, 152-162 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. G. Fuertes, M. Milanes, M. Rodriguez-Gago, et al., “Changes in hypothalamic paravenricular nucleus catecholaminergic activity after acute and chronic morphine administration,” Eur. J. Pharmacol., 388, No. 1, 49-56 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. R. Maggi, F. Pimpinelli, L. Casulari, and F. Martini, “Antiprogestins inhibit the binding of opioids to μ-opioid receptors in nervous membrain preparations,” Eur. J. Pharmacol., 301, Nos. 1/3, 169-177 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. S. G. Pivina, V. K. Akulova, and N. E. Ordian, “The impact of early developmental impairment of the receptor-dependent glucocorticoid action on the pituitary adrenal axis activity and behavior of male rats,” Ross. Fiziol. Zh. Sechenov., 96, No. 1, 69-76 (2010).

    CAS  Google Scholar 

  29. M. Campo, J. Sotres, K. Ferra, and A. Aguirre, “High dose naloxone (1 mg/kg): psychological and endocrine effects in normal male subjects pretreated with one milligram of dexamethasone,” Psychoneuroendocrinology, 23, No. 4, 413-424 (1998).

    Article  Google Scholar 

  30. A. Rashidy-Pour, H. Sadeghi, A. A. Taherian, et al., “The effects of acute restraint stress and dexamethasone on retrieval of long-term memory in rats: an interaction with opiate system,” Behav. Brain Res., 23; 154, No. 1, 193-198 (2004).

  31. S. J. Evans, T. F. Murray, and F. J. Moore, “Partial purification and biochemical characterization of a membrane glucocorticoid receptor from an amphibian brain,” J. Steroid. Biochem. Mol. Biol., 72, No. 5, 209-221 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kesmati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesmati, M., Rezai, M. & Torabi, M. Modulatory Effects of the Glucocorticoid and Opioid Systems on Anxiety-Related Behavior in Young and Mature Rats. Neurophysiology 48, 184–190 (2016). https://doi.org/10.1007/s11062-016-9587-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11062-016-9587-5

Keywords

Navigation