Skip to main content
Log in

Effects of particle size of silica aerogel on its nano-porous structure and thermal behaviors under both ambient and high temperatures

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Silica aerogel as the most commonly used aerogel has attracted increasing attention from both academia and industries due to its extraordinary performances and potentials. Through this study, influences of the particle size (38–880 μm) on its nano-porous structure and thermal behaviors were addressed based on a series of experimental tests under both ambient and high temperatures (i.e., 1000 °C). It was known from the experimental results that the fractional densities of samples with particle sizes of 270–880 μm were similar, which were about 40% of the sample with a particle size of 38 μm. The ratio of densification was found decrease to about 10–40% when heating time increased from 10 to 90 min. For those samples with 150 μm or finer particles, SiC crystal with 70.8 nm particles was generated, and the pore shape was slit in the silica aerogel. The Brunauer–Emmett–Teller (BET) surface area, cumulative pore volume, and average pore diameter of those heated samples with over 75 μm diameter were about 40%, 20%, and 50% of those unheated (virgin) samples, respectively. Virgin samples showed 18% lower thermal conductivity for 75 μm particles compared to that of 38 μm, while for the heated samples, 38 μm particles showed a 28% lower thermal conductivity than that with 880 μm. Mixture of silica aerogel and other inorganic material particles are recommended for high-temperature applications, while the silica aerogel with different-sized particles are observed better for applications under ambient temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aegerter MA, Leventis N, Koebel MM (2011) Aerogels handbook. Springer Science & Business Media, New York

  • Alnaief M, Antonyuk S, Hentzschel CM, Leopold CS, Heinrich S, Smirnova I (2012) A novel process for coating of silica aerogel microspheres for controlled drug release applications. Microporous Mesoporous Mater 160:167–173

    Article  CAS  Google Scholar 

  • Ayral A, Phalippou J, Woignier T (1992) Skeletal density of silica aerogels determined by helium pycnometry. J Mater Sci 27:1166–1170

    Article  CAS  Google Scholar 

  • Bocker C, Bhattacharyya S, Höche T, Rüssel C (2009) Size distribution of BaF 2 nanocrystallites in transparent glass ceramics. Acta Mater 57:5956–5963

    Article  CAS  Google Scholar 

  • Buratti C, Moretti E, Belloni E (2016) Nanogel windows for energy building efficiency. In: Pacheco Torgal F, Buratti C, Kalaiselvam S, Granqvist CG, Ivanov V (eds) Nano and biotech based materials for energy building efficiency. Springer International Publishing, Cham, pp 41–69. https://doi.org/10.1007/978-3-319-27505-5_3

  • Casu M, Casula MF, Corrias A, Paschina G (2003) Textural characterization of high temperature silica aerogels. J Non-Cryst Solids 315:97–106. https://doi.org/10.1016/S0022-3093(02)01596-X

    Article  CAS  Google Scholar 

  • Chai SH, Wang HP, Liang Y, Xu BQ (2007) Sustainable production of acrolein: gas-phase dehydration of glycerol over Nb 2 O 5 catalyst. J Catal 250:342–349

    Article  CAS  Google Scholar 

  • Eggersdorfer ML, Kadau D, Herrmann HJ, Pratsinis SE (2012) Aggregate morphology evolution by sintering: number & diameter of primary particles. J Aerosol Sci 46:7–19. https://doi.org/10.1016/j.jaerosci.2011.11.005

    Article  CAS  Google Scholar 

  • Feng JD, Le DY, Nguyen ST, Tan Chin Nien V, Jewell D, Duong HM (2016) Silica–cellulose hybrid aerogels for thermal and acoustic insulation applications. Colloid Surface A 506:298–305. https://doi.org/10.1016/j.colsurfa.2016.06.052

    Article  CAS  Google Scholar 

  • German RM (2014a) Chapter Four - measurement tools and experimental observations. In: Sintering: from Empirical Observations to Scientific Principles. Butterworth-Heinemann, Boston, pp 71–130. https://doi.org/10.1016/B978-0-12-401682-8.00004-5

  • German RM (2014b) Chapter Six - geometric trajectories during sintering. In: Sintering: from Empirical Observations to Scientific Principles. Butterworth-Heinemann, Boston, pp 141–181. https://doi.org/10.1016/B978-0-12-401682-8.00006-9

    Book  Google Scholar 

  • Giray S, Bal T, Kartal AM, Kızılel S (2012) Controlled drug delivery through a novel PEG hydrogel encapsulated silica aerogel system. J Biomed Mater Res A 100:1307–1315

    Article  Google Scholar 

  • He S, Huang DM, Bi HJ, Li Z, Yang H, Cheng XD (2015a) Synthesis and characterization of silica aerogels dried under ambient pressure bed on water glass. J Non-Cryst Solids 410:58–64

    Article  CAS  Google Scholar 

  • He S, Li Z, Shi X, Yang H, Gong LL, Cheng XD (2015b) Rapid synthesis of sodium silicate based hydrophobic silica aerogel granules with large surface area. Adv Powder Technol 26:537–541

    Article  CAS  Google Scholar 

  • Huang DM, Guo CN (2017) Thermal protective performance of silica aerogel felt bedded firefighters’ protective clothing under fire conditions. Mater Sci 23:335–341

    Google Scholar 

  • Huang DM, Guo CN, Zhang MZ, Shi L (2017) Characteristics of nanoporous silica aerogel under high temperature from 950 °C to 1200 °C. Mater Des 129:82–90. https://doi.org/10.1016/j.matdes.2017.05.024

    Article  CAS  Google Scholar 

  • Igathinathane C, Pordesimo LO, Columbus EP, Batchelor WD, Methuku SR (2008) Shape identification and particles size distribution from basic shape parameters using Image. J Comput Electron A 63:168–182

    Article  Google Scholar 

  • Lei WW, Portehault D, Liu D, Qin S, Chen Y (2013) Porous boron nitride nanosheets for effective water cleaning. Nat Commun 4:1777

    Article  Google Scholar 

  • Li WC, Lu AH, Guo SC (2002) Control of mesoporous structure of aerogels derived from cresol–formaldehyde. J Colloid Interface Sci 254:153–157

    Article  CAS  Google Scholar 

  • Li XK, Liu LH, Zhang YX, Shen SD, Ge SH, Ling LCH (2001) Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels. Carbon 39:159–165

    Article  CAS  Google Scholar 

  • Li XW, Duan YY, Wang XD (2011) Impacts of structural changes of SiO2 aerogel under high temperature on its insulation performance. J Therm Sci Technol 10:189–193

    CAS  Google Scholar 

  • Li Z, Cheng XD, Shi L, He S, Gong LL, Li CC, Zhang HP (2016) Flammability and oxidation kinetics of hydrophobic silica aerogels. J Hazard Mater 320:350–358

    Article  Google Scholar 

  • Liu ML, Yang DA, Qu YF (2008) Preparation of super hydrophobic silica aerogel and study on its fractal structure. J Non-Cryst Solids 354:4927–4931

    Article  CAS  Google Scholar 

  • Loche D, Malfatti L, Carboni D, Alzari V, Mariani A, Casula MF (2016) Incorporation of graphene into silica-based aerogels and application for water remediation. RSC Adv 6:66516–66523

    Article  CAS  Google Scholar 

  • Lv BW, Fan XL, Xie H, Wang TJ (2017) Effect of neck formation on the sintering of air-plasma-sprayed thermal barrier coating system. J Eur Ceram Soc 37:811–821. https://doi.org/10.1016/j.jeurceramsoc.2016.08.033

    Article  CAS  Google Scholar 

  • Nawaz K, Schmidt SJ, Jacobi AM (2016) Adsorption and desorption isotherms of desiccants for dehumidification applications: silica aerogels and silica aerogel coatings on metal foams. Paper presented at the 15th International Refrigeration and Air Conditioning Conference, Purdue, 2096, 1-10

  • Neugebauer A, Chen K, Tang A, Allgeier A, Glicksman LR, Gibson LJ (2014) Thermal conductivity and characterization of compacted, granular silica aerogel. Energy Build 79:47–57. https://doi.org/10.1016/j.enbuild.2014.04.025

    Article  Google Scholar 

  • Okuma G, Kadowaki D, Hondo T, Sato A, Tanaka S, Wakai F (2017) Computation of sintering stress and bulk viscosity from microtomographic images in viscous sintering of glass particles. J Am Ceram Soc 100:867–875. https://doi.org/10.1111/jace.14609

    Article  CAS  Google Scholar 

  • Pan YL, He S, Gong L, Cheng X, Li C, Li Z, Liu Z, Zhang H (2017) Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying. Mater Des 113:246–253

    Article  CAS  Google Scholar 

  • Perdigoto MLN, Martins RC, Rocha N, Quina MJ, Gando-Ferreira L, Patrício R, Durães L (2012) Application of hydrophobic silica based aerogels and xerogels for removal of toxic organic compounds from aqueous solutions. J Colloid Interface Sci 380:134–140

    Article  CAS  Google Scholar 

  • Pouretedal HR, Kazemi M (2012) Characterization of modified silica aerogel using sodium silicate precursor and its application as adsorbent of Cu2+, Cd2+, and Pb2+ ions. Int J Ind Chem 3:20

    Article  Google Scholar 

  • Reichenauer G, Heinemann U, Ebert HP (2007) Relationship between pore size and the gas pressure dependence of the gaseous thermal conductivity. Colloid Surfaces A 300:204–210. https://doi.org/10.1016/j.colsurfa.2007.01.020

    Article  CAS  Google Scholar 

  • Reim M, Reichenauer G, Körner W, Manara J, Arduini-Schuster M, Korder S, Beck A, Fricke J (2004) Silica-aerogel granulate–structural, optical and thermal properties. J Non-Cryst Solids 350:358–363

    Article  CAS  Google Scholar 

  • Sempéré R, Bourret D, Woignier T, Phalippou J, Jullien R (1993) Scaling approach to sintering of fractal matter. Phys Rev Lett 71:3307–3310

    Article  Google Scholar 

  • Shi CX, Zhang SC, Jiang YG, Feng JZ, Feng J (2016) High temperature properties of silica aerogel. Rare Metal Mater Eng 1:210–213

    Google Scholar 

  • Simchi A (2004) The role of particle size on the laser sintering of iron powder. Metall Mater Trans A 35:937–948

    Article  Google Scholar 

  • Sun ZG, Qiao XJ, Ren QG, Guo XD, Wei L, Liu PZ, Li WC (2016) Synthesis of SiC/SiO2 nanochains by carbonthermal reduction process and its optimization. Adv Powder Technol 27:1552–1559. https://doi.org/10.1016/j.apt.2016.05.017

    Article  CAS  Google Scholar 

  • Wei GS, Liu YS, Zhang XX, Du XZ (2013) Radiative heat transfer study on silica aerogel and its composite insulation materials. J Non-Cryst Solids 362:231–236

    Article  CAS  Google Scholar 

  • Wei GS, Liu YS, Zhang XX, Yu F, Du XZ (2011) Thermal conductivities study on silica aerogel and its composite insulation materials. Int J Heat Mass Transf 54:2355–2366

    Article  CAS  Google Scholar 

  • Woignier T, Phalippou J (1987) Skeletal density of silica aerogels. J Non-Cryst Solids 93:17–21

    Article  CAS  Google Scholar 

  • Yang GX, Biswas P (1999) Computer simulation of the aggregation and sintering restructuring of fractal-like clusters containing limited numbers of primary particles. J Colloid Interface Sci 211:142–150

    Article  CAS  Google Scholar 

  • Yang X, Wang YH, Xu LL, Yu XD, Guo YH (2008) Silver and indium oxide codoped TiO 2 nanocomposites with enhanced photocatalytic activity. J Phys Chem C 112:11481–11489

    Article  CAS  Google Scholar 

  • Yuan B, Ding S, Wang D, Wang G, Li H (2012) Heat insulation properties of silica aerogel/glass fiber composites fabricated by press forming. Mater Lett 75:204–206

    Article  CAS  Google Scholar 

  • Zhao JJ, Duan YY, Wang XD, Wang BX (2012) A 3-D numerical heat transfer model for silica aerogels based on the porous secondary nanoparticle aggregate structure. J Non-Cryst Solids 358:1287–1297

    Article  CAS  Google Scholar 

  • Zhou CL, Yang J, Sui XY, Liu RX, Zhang WY, Wang CH (2014) Impacts of structural change of SiO2 aerogel under different time and high temperature conditions on insulation performance. Adv Ceram 5:11–16

  • Zhuravlev LT (2000) The surface chemistry of amorphous silica. Zhuravlev model. Colloid Surfaces A 173:1–38

    Article  CAS  Google Scholar 

  • Zong SK, Wei W, Jiang ZF, Yan ZX, Zhu JJ, Xie JM (2015) Characterization and comparison of uniform hydrophilic/hydrophobic transparent silica aerogel beads: skeleton strength and surface modification. RSC Adv 5:55579–55587

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (grant no. 2018YFC0810603, 2017YFC0804900); Zhejiang Provincial Natural Science Foundation of China (grant no. LY17E060004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Zhang, M., Shi, L. et al. Effects of particle size of silica aerogel on its nano-porous structure and thermal behaviors under both ambient and high temperatures. J Nanopart Res 20, 308 (2018). https://doi.org/10.1007/s11051-018-4419-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4419-8

Keywords

Navigation