Skip to main content

Advertisement

Log in

Preparation method: structure–bioactivity correlation in mesoporous bioactive glass

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Mesoporous bioactive glasses (MBGs) are receiving increased attention because of their superior bioactive properties and possible applications as drug-releasing carriers, bone implants and sealing materials in dentistry. We report here the results of investigation of structures and bioactivities of two types of MBG particles prepared by two different techniques, the sol–gel method and spray pyrolysis (SP). In this study, we used transmission electron microscopy and selected area electron diffraction to characterize particle morphology and atomistic structures of the particles correlating these observations with nitrogen adsorption measurements to determine surface areas of the particles and in vitro bioactivity tests. It is found that the preparation method can influence the final composition of the particles and that SP method offers a better control over the composition. The SP particles have higher bioactivity than the sol–gel particles due to their higher surface area and possibly more favourable atomistic structure for promoting deposition of pure hydroxyl apatite phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  CAS  Google Scholar 

  • Chatzistavrou X, Tsigkou O, Amin HD, Paraskevopoulos KM, Salih V, Boccaccini AR (2012) Sol–gel based fabrication and characterization of new bioactive glass–ceramic composites for dental applications. J Eur Ceram Soc 32:3051–3061

    Article  CAS  Google Scholar 

  • Chen CY, Tseng TK, Tsay CY, Lin CK (2008) Formation of irregular nanocrystalline CeO2 particles from acetate-based precursor via spray pyrolysis. J Mater Eng Perform 17:20–24

    Article  CAS  Google Scholar 

  • Cho JS, Kang YC (2009) Synthesis of spherical shape borate-based bioactive glass powders prepared by ultrasonic spray pyrolysis. Ceram Int 35:2103–2109

    Article  CAS  Google Scholar 

  • Christie JK, Malik J, Tilocca A (2011) Bioactive glasses as potential radioisotope vectors for in situ cancer therapy: investigating the structural effects of yttrium. Physical Chem Chem Phys 13:17749–17755

    Article  CAS  Google Scholar 

  • Cockayne DJH, McKenzie DR (1988) Electron diffraction analysis of polycrystalline and amorphous thin films. Acta Crystallogr A 44:870–878

    Article  Google Scholar 

  • Cockayne D, McKenzie DR, Muller D (1991) Electron diffraction of amorphous thin films using PEELS. Microsc Microanal Microstruct 2:359–366

    Article  CAS  Google Scholar 

  • Hench LL (1988) Bioactive ceramics. Annals of New York Academy of Science, New York

    Google Scholar 

  • Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  CAS  Google Scholar 

  • Hench LL (1997) Sol–gel materials for bioceramic applications. Curr Opin Solid STM 2:604–610

    Article  CAS  Google Scholar 

  • Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5:117–141

    Article  Google Scholar 

  • Hench LL, Xynos ID, Polak JM (2004) Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed 15:543–562

    Article  CAS  Google Scholar 

  • Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass–ceramics. Biomaterials 32:2757–2774

    Article  CAS  Google Scholar 

  • Kay MI, Young RA, Posner AS (1964) Crystal structure of hydroxyapatite. Nature 204:1050–1052

    Article  CAS  Google Scholar 

  • Kirkland EJ (1998) Advanced computing in electron microscopy. Plenum Press, New York

    Book  Google Scholar 

  • Konnert JH, D’Antonio P, Karle J (1982) Comparison of radial distribution function for silica glass with those for various bonding topologies: use of correlation function. J Non-Cryst Solids 53:135–141

    Article  CAS  Google Scholar 

  • Lei B, Chen XF, Wang YG, Zhao NR, Du C, Fang LM (2009) Synthesis and bioactive properties of macroporous nanoscale SiO2–CaO–P2O5 bioactive glass. J Non-Cryst Solids 355:2678–2681

    Article  CAS  Google Scholar 

  • Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol–gel processing. J Appl Biomater 2:231–239

    Article  CAS  Google Scholar 

  • Mačković M, Hoppe A, Detsch R, Mohn D, Stark WJ, Spiecker E, Boccaccini AR (2012) Bioactive glass (type 45S5) nanoparticles: in vitro reactivity on nanoscale and biocompatibility. J Nanopart Res 14:966

    Article  Google Scholar 

  • Messing GL, Zhang SC, Jayanthi GV (1993) Ceramic powder synthesis by spray-pyrolysis. J Am Ceram Soc 76:2707–2726

    Article  CAS  Google Scholar 

  • Shih SJ, Chang LYS, Chen CY, Borisenko KB, Cockayne DJH (2009) Nanoscale yttrium distribution in yttrium-doped ceria powder. J Nanopart Res 11:2145–2152

    Article  CAS  Google Scholar 

  • Shih CJ, Chen HT, Huang LF, Lu PS, Chang HF, Chang IL (2010) Synthesis and in vitro bioactivity of mesoporous bioactive glass scaffolds. Mater Sci Eng C-Mater Biol Appl 30:657–663

    Article  CAS  Google Scholar 

  • Sun J, Li YS, Li L, Zhao WR, Li L, Gao JH, Ruan ML, Shi JL (2008) Functionalization and bioactivity in vitro of mesoporous bioactive glasses. J Non-Cryst Solids 354:3799–3805

    Article  CAS  Google Scholar 

  • Tilocca A (2008) Short- and medium-range structure of multicomponent bioactive glasses and melts: an assessment of the performances of shell-model and rigid-ion potentials. J Chem Phys 129:084504

    Article  Google Scholar 

  • Vallet-Regi M, Balas F, Colilla M, Manzano M (2008) Bone-regenerative bioceramic implants with drug and protein controlled delivery capability. Prog Solid State Chem 36:163–191

    Article  CAS  Google Scholar 

  • Vogel W, Höland W (1982) Nucleation and crystallization kinetics of an MgO-Al2O3-SiO2 base glass when using different doping agents. Z Chem 22:429–438

    Article  CAS  Google Scholar 

  • Xia W, Chang J (2006) Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. J Control Release 110:522–530

    Article  CAS  Google Scholar 

  • Xia W, Chang J (2008) Preparation, in vitro bioactivity and drug release property of well-ordered mesoporous 58S bioactive glass. J Non-Cryst Solids 354:1338–1341

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Taiwan University of Science and Technology (Grant No. 100H451201) and from the National Science Council of Taiwan (Grant No. NSC 101-2628-E-011-008-MY2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Ju Shih.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, SJ., Chou, YJ. & Borisenko, K.B. Preparation method: structure–bioactivity correlation in mesoporous bioactive glass. J Nanopart Res 15, 1763 (2013). https://doi.org/10.1007/s11051-013-1763-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1763-6

Keywords

Navigation