Skip to main content
Log in

Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Salinity causes multifarious adverse effects to plants. Plants response to salt stress involves numerous processes that function in coordination to alleviate both cellular hyperosmolarity and ion disequilibrium. A Na+/H+ antiporter NHX1 gene has been isolated from a halophytic plant Salicornia brachiata in this study. Predicted amino acid sequence similarity, protein topology and the presence of functional domains conserved in SbNHX1 classify it as a plant vacuolar NHX gene. The SbNHX1 cDNA has an open reading frame of 1,683 bp, encoding a polypeptide of 560 amino acid residues with an estimated molecular mass 62.44 kDa. The SbNHX1 shows high amino acid similarity with other halophytic NHX gene and belongs to Class-I type NHXs. TMpred suggests that SbNHX1 contains 11 strong transmembrane (TM). Real time PCR analysis revealed that SbNHX1 transcript expresses maximum at 0.5 M. Transcript increases gradually by increasing the treatment duration at 0.5 M NaCl, however, maximum expression was observed at 48 h. The overexpression of SbNHX1 gene in tobacco plant showed NaCl tolerance. This study shows that SbNHX1 is a potential gene for salt tolerance, and can be used in future for developing salt tolerant crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434

    Article  CAS  PubMed  Google Scholar 

  2. Shi H, Lee BH, Wu SJ, Zhu JK (2003) Over-expression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21:81–85

    Article  CAS  PubMed  Google Scholar 

  3. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K et al (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    Article  CAS  PubMed  Google Scholar 

  4. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  5. Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742

    CAS  PubMed  Google Scholar 

  6. Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151

    Article  CAS  PubMed  Google Scholar 

  7. Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288:223–239

    Article  Google Scholar 

  8. Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199

    Article  CAS  PubMed  Google Scholar 

  9. Yokoi S, Quintero FJ, Cubero B, Ruiz T, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:1–12

    Article  Google Scholar 

  10. Gaxiola RA, Rao R, Sherman A, Grifasi P, Alpier SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNHX1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci USA 96:1480–1485

    Article  CAS  PubMed  Google Scholar 

  11. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by over expression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  12. Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768

    Article  CAS  PubMed  Google Scholar 

  13. Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836

    Article  CAS  PubMed  Google Scholar 

  14. Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Triticum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167:849–859

    Article  CAS  Google Scholar 

  15. Rajagopal D, Agarwal P, Tyagi W, Singla-Pareek SL, Reddy MK, Sopory SK (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breed 19:137–151

    Article  CAS  Google Scholar 

  16. Chauhan S, Forsthoefel N, Ran Y, Quigley F, Nelson DE, Bohnert HJ (2000) Na+/myo-inositol symporters and Na+/H+-antiport in Mesembryanthemum crystallinum. Plant J 24:511–522

    Article  CAS  PubMed  Google Scholar 

  17. Hamada A, Shono M, Xia T, Ohta M, Hayashi Y, Tanaka A, Hayakawa T (2001) Isolation and characterization of a Na+/H+ antiporter gene from the halophyte Atriplex gmelini. Plant Mol Biol 46:35–42

    Article  CAS  PubMed  Google Scholar 

  18. Ma XL, Zhang Q, Shi HZ, Zhu JK, Zhao YX, Ma CL, Zhang H (2004) Molecular cloning and different expression of a vacuolar Na+/H+ antiporter gene in Suaeda salsa under salt stress. Biol Plant 48:219–225

    Article  CAS  Google Scholar 

  19. Xia T, Apse MP, Aharon GS, Blumwald E (2002) Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in Beta vulgaris. Physiol Plant 116:206–212

    Article  CAS  PubMed  Google Scholar 

  20. Zhou S, Chen X, Zhang X, Li Y (2008) Improved salt tolerance in tobacco plants by co-transformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett 30:369–376

    Article  CAS  PubMed  Google Scholar 

  21. Jha B, Agarwal PK, Reddy PS, Lal S, Sopory SK, Reddy MK (2009) Identification of salt -induced genes from Salicornia brachiata, an extreme halophyte through expressed sequence tags analysis. Genes Genet Syst 84:111–120

    Article  CAS  PubMed  Google Scholar 

  22. Agarwal PK, Gupta K, Jha B (2010) Molecular characterization of the Salicornia brachiata SbMAPKK gene and its expression by abiotic stress. Mol Biol Rep 37:981–986

    Article  CAS  PubMed  Google Scholar 

  23. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real- time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  25. Arnon DI (1949) Copper enzymes in isolated chloroplasts polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  Google Scholar 

  26. Nagata T, Iizumi S, Satoh K, Kikuchi S (2008) Comparative molecular biological analysis of membrane transport genes in organisms. Plant Mol Biol 66:565–585

    Article  CAS  PubMed  Google Scholar 

  27. Counillon L, Pouyssegur J (2000) The expanding family of eukaryotic Na+/H+ exchangers. J Biol Chem 275:1–4

    Article  CAS  PubMed  Google Scholar 

  28. Rodríguez-Rosales MP, Gálvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4:265–276

    Article  PubMed  Google Scholar 

  29. Vera-Estrella R, Barkla BJ, García-Ramírez L, Pantoja O (2005) Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol 139:1507–1517

    Article  CAS  PubMed  Google Scholar 

  30. Wells KM, Rao R (2001) The yeast Na+/H+ exchanger Nhx1 is an N-linked glycoprotein. Topological implications. J Biol Chem 276:3401–3407

    Article  CAS  PubMed  Google Scholar 

  31. Zahran HH, Marín-Manzano MC, Sánchez-Raya AJ, Bedmar EJ, Venema K, Rodríguez-Rosales MP (2007) Effect of salt stress on the expression of NHX-type ion transporters in Medicago intretexta and Melilotus indicus plants. Physiol Plant 131:122–130

    Article  CAS  PubMed  Google Scholar 

  32. Zörb C, Noll A, Karl S, Leib K, Yan F, Schubert S (2004) Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress. J Plant Physiol 162:55–66

    Article  Google Scholar 

  33. Fukuda A, Chiba K, Maeda M, Nakamura A, Maeshima M, Tanaka Y (2004) Effect of salt and osmotic stresses on the expression of genes for the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiporter from barley. J Exp Bot 55:585–594

    Article  CAS  PubMed  Google Scholar 

  34. Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H et al (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:146–159

    Article  CAS  PubMed  Google Scholar 

  35. Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45:600–607

    Article  CAS  PubMed  Google Scholar 

  36. Wang ZN, Zhang JS, Guo BH, He SJ, Tian AG, Chen SY (2002) Cloning and characterization of the Na+/H+ antiport genes from Triticum aestivum. Acta Bot Sin 44:1203–1208

    CAS  Google Scholar 

  37. Li JY, He XW, Xu L, Zhou J, Wu P, Shou HX et al (2007) Molecular and functional comparisons of the vacuolar Na+/H+ exchangers originated from glycophytic and halophytic species. J Zhejiang Univ Sci B 9:132–140

    Article  Google Scholar 

  38. Zhang GH, Su Q, An LJ, Wu S (2008) Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem 46:117–126

    Article  CAS  PubMed  Google Scholar 

  39. Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T et al (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532:279–282

    Article  CAS  PubMed  Google Scholar 

  40. Liu P, Yang GD, Li H, Zheng CC, Wu C-A (2010) Overexpression of NHX1s in transgenic Arabidopsis enhances photoprotection capacity in high salinity and drought conditions. Acta Physiol Plant 32:81–90

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to DST, Govt. of India, New Delhi for financial support. AJ is thankful to DST for Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pradeep K. Agarwal or Bhavanath Jha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 1102 kb)

Supplementary material 2 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, A., Joshi, M., Yadav, N.S. et al. Cloning and characterization of the Salicornia brachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep 38, 1965–1973 (2011). https://doi.org/10.1007/s11033-010-0318-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0318-5

Keywords

Navigation