Skip to main content
Log in

Differential Gene Expression and Characterization of Tissue-specific cDNA Clones in Oil Palm using mRNA Differential Display

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The mRNA differential display method was utilized to study the differential expression and regulation of genes in two species of oil palm, the commercially grown variety Elaeis guineensis, var. tenera and the South American species, Elaeis oleifera. We demonstrated the differential expression of genes in the mesocarp and kernel at the week of active oil synthesis (15 week after anthesis) during fruit development as compare to the roots and leaves and the isolation of tissue-specific and species-specific cDNA clones. A total of eight specific cDNA clones were isolated and their specificities were confirmed by Northern hybridization and classified into three groups. Group one contains four clones (KT3, KT4, KT5 and KT6) that are kernel-specific for E. guineensis, tenera and E. oleifera. The second group represents clone FST1, which is mesocarp and kernel-specific for E. guineensis, tenera and E. oleifera. The third group represents clones MLT1, MLT2 and MLO1 that are mesocarp and leaf-specific. Northern analysis showed that their expressions were developmentally regulated. Nucleotide sequencing and homology search in GenBank data revealed that clones KT3 and KT4 encode for the same maturation protein PM3. While clones MLT1 and MLT2 encode for S-ribonuclease binding protein and fibrillin, respectively. The other clones (KT5, KT6, FST1 and MLO1) did not display any significant homology to any known protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CWS Hartley (1977) The Oil Palm (Elaeis guineensis Jacq) Longman Group Limited London

    Google Scholar 

  2. HC Berger SH Ong (1985) Olagineux 40 613–621 Occurrence Handle1:CAS:528:DyaL28XksF2nurY%3D

    CAS  Google Scholar 

  3. V Rao CW Chin N Rajanaidu (1989) Elaeis 1 IssueID2 109–118

    Google Scholar 

  4. P O’Hara AR Slabas T Fawcett (2000) 14th International Symposium on Plant Lipid Cardiff, Wales UK

    Google Scholar 

  5. AR Slabas S Rawsthorne (2000) 14th International Symposium on Plant Lipids Cardiff, Wales UK

    Google Scholar 

  6. Z Mou Y He Y Dai X Liu J Li (2000) Plant Cell 12 405–417 Occurrence Handle10.1105/tpc.12.3.405 Occurrence Handle10715326 Occurrence Handle1:CAS:528:DC%2BD3cXktFWju70%3D

    Article  PubMed  CAS  Google Scholar 

  7. AA Millar M Wrischer L Kunst (1998) Plant Cell 11 1889–1902

    Google Scholar 

  8. WD Hitz NS Yadav RS Reiter CJ Mauvais AJ Kinney (1995) NoChapterTitle JC Kader P Mazliak (Eds) Plant Lipid Metabolism Kluwer Academic Publishers The Netherlands 506–508

    Google Scholar 

  9. SNA Abdullah FH Shah SC Cheah (1995) Asia Pac. J. Mol. Biol. Biotech. 3 106–111

    Google Scholar 

  10. J Sambrook EF Fristsch T Maniatis (1989) Molecular Cloning: A Laboratory Manual Cold Spring Harbor Laboratory Press Clod Spring Harbor, NY

    Google Scholar 

  11. KC Oo KB Lee SH Augustine (1986) Phytochemistry 25 IssueID2 405–407 Occurrence Handle10.1016/S0031-9422(00)85489-8 Occurrence Handle1:CAS:528:DyaL28XhtVKnsLc%3D

    Article  CAS  Google Scholar 

  12. YIC Hsing ZY Chen TY Chow (1995) Plant Physiol. 109 1125

    Google Scholar 

  13. T Moriguchi M Kita T Endo-Inagaki Y Ikoma M Omura (1998) Biochem. Biophys. Acta 1442 IssueID2–3 334–338 Occurrence Handle9804984 Occurrence Handle1:CAS:528:DyaK1cXntVyisLY%3D

    PubMed  CAS  Google Scholar 

  14. E Monte D Ludevid S Prat (1999) Plant J. 19 IssueID4 399–410 Occurrence Handle10.1046/j.1365-313X.1999.00537.x Occurrence Handle10504562 Occurrence Handle1:CAS:528:DyaK1MXms1Srur4%3D

    Article  PubMed  CAS  Google Scholar 

  15. HU Kim SS Wu C Ratnayake AH Huang (2001) Plant Physiol. 126 IssueID1 330–341 Occurrence Handle10.1104/pp.126.1.330 Occurrence Handle11351096 Occurrence Handle1:CAS:528:DC%2BD3MXjslWjtro%3D

    Article  PubMed  CAS  Google Scholar 

  16. J Pozueta-Romero F Rafia G Houlne C Cheniclet JP Carde ML Schantz R Schantz (1997) Plant Physiol. 115 IssueID3 1185–1194 Occurrence Handle10.1104/pp.115.3.1185 Occurrence Handle9390444 Occurrence Handle1:CAS:528:DyaK2sXns1ykur8%3D

    Article  PubMed  CAS  Google Scholar 

  17. P Liang AB Pardee (1992) Science 257 967–971 Occurrence Handle1354393 Occurrence Handle1:CAS:528:DyaK38Xls1Cqt70%3D

    PubMed  CAS  Google Scholar 

  18. P Liang L Averboukh K Keyomarsi R Sager AB Pardee (1992) Cancer Res. 52 6966–6968 Occurrence Handle1458489 Occurrence Handle1:CAS:528:DyaK3sXjs1yltQ%3D%3D

    PubMed  CAS  Google Scholar 

  19. P Liang L Averboukh AB Pardee (1993) Nucleic Acids Res. 21 IssueID14 3269–3275 Occurrence Handle8341601 Occurrence Handle1:CAS:528:DyaK3sXlsFaqt7k%3D

    PubMed  CAS  Google Scholar 

  20. S Petrucco A Bolchi C Foroni R Percudani GL Rossi S Ottonello (1996) Plant Cell. 8 69–80 Occurrence Handle10.1105/tpc.8.1.69 Occurrence Handle8597660 Occurrence Handle1:CAS:528:DyaK28Xnslymuw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  21. JQ Wilkinson MB Lanahan TW Conner HJ Klee (1995) Plant Mol. Biol. 27 1097–1108 Occurrence Handle10.1007/BF00020883 Occurrence Handle7766892 Occurrence Handle1:CAS:528:DyaK2MXmtFCgtL0%3D

    Article  PubMed  CAS  Google Scholar 

  22. K Seehaus R Tenhaken (1998) Plant Mol. Biol. 38 1225–1234 Occurrence Handle10.1023/A:1006036827841 Occurrence Handle9869427 Occurrence Handle1:CAS:528:DyaK1MXksVKhtg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  23. FH Shah TS Cha (2000) Plant Sci. 154 153–160 Occurrence Handle10.1016/S0168-9452(99)00270-8 Occurrence Handle10729614 Occurrence Handle1:CAS:528:DC%2BD3cXhvV2mtb8%3D

    Article  PubMed  CAS  Google Scholar 

  24. TS Cha FH Shah (2001) Plant Sci. 160 913–923 Occurrence Handle10.1016/S0168-9452(01)00335-1 Occurrence Handle11297788 Occurrence Handle1:CAS:528:DC%2BD3MXisF2kur4%3D

    Article  PubMed  CAS  Google Scholar 

  25. TL Sims M Ordanic (2001) Plant Mol. Biol. 47 771–783 Occurrence Handle10.1023/A:1013639528858 Occurrence Handle11785938 Occurrence Handle1:CAS:528:DC%2BD38XjtVCqsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

  26. HS Lee S Huang TH Kao (1994) Nature 367 560–563 Occurrence Handle10.1038/367560a0 Occurrence Handle7509041 Occurrence Handle1:CAS:528:DyaK2cXhsFGrsbc%3D

    Article  PubMed  CAS  Google Scholar 

  27. J Murfett TL Atherton B Mou CS Gasser BA McClure (1994) Nature 367 563–566 Occurrence Handle10.1038/367563a0 Occurrence Handle8107825 Occurrence Handle1:CAS:528:DyaK2cXhsFGrtr4%3D

    Article  PubMed  CAS  Google Scholar 

  28. S Huang HS Lee B Karunanandaa TH Kao (1994) Plant Cell. 6 1021–1028 Occurrence Handle8069103 Occurrence Handle1:CAS:528:DyaK2cXlslGgs7Y%3D

    PubMed  CAS  Google Scholar 

  29. J Royo C Kunz Y Kowyama M Anderson AE Clarke E Newbigin (1994) Proc. Natl. Acad. Sci. USA 91 6511–6514 Occurrence Handle8022814 Occurrence Handle1:CAS:528:DyaK2cXlvF2gtb4%3D

    PubMed  CAS  Google Scholar 

  30. R Knoth P Hansmann P Sitte (1986) Planta 168 167–174 Occurrence Handle1:CAS:528:DyaL28XkslGqtL0%3D

    CAS  Google Scholar 

  31. J Deruere S Romer A d’Hartingue RA Backhaus M Kuntz B Camara (1994) Plant Cell. 6 119–133 Occurrence Handle10.1105/tpc.6.1.119 Occurrence Handle8130642 Occurrence Handle1:CAS:528:DyaK2cXmsVyrsrg%3D

    Article  PubMed  CAS  Google Scholar 

  32. M Vishnevetsky M Ovadis H Itzhaki M Levy Y Libal-Weksler Z Adam A Vainstein (1996) Plant J. 10 IssueID6 1111–1118 Occurrence Handle10.1046/j.1365-313X.1996.10061111.x Occurrence Handle9011091 Occurrence Handle1:CAS:528:DyaK2sXnsV2rsg%3D%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farida Habib Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

San, C.T., Shah, F.H. Differential Gene Expression and Characterization of Tissue-specific cDNA Clones in Oil Palm using mRNA Differential Display. Mol Biol Rep 32, 227–235 (2005). https://doi.org/10.1007/s11033-005-3142-6

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-005-3142-6

Keywords

Navigation