Skip to main content
Log in

Haploid induction and its application in maize breeding

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Maize is a heterosis-utilizing crop species, and the application of maize hybrids has significantly improved total maize yields worldwide. Breeding pure lines is the most important part of heterosis utilization. The double haploid (DH) breeding technology is the approach rising recently in breeding pure lines; compared to the conventional recurrent-selfing method, it can significantly accelerate the crop breeding process. Similar to molecular breeding and transgenic techniques, maize DH breeding has been playing an increasingly important role in commercial breeding and is becoming the core technique in modern maize breeding. In this review, we summarize recent progress in maize DH breeding and put forth our opinions on the future development of double haploid techniques in modern maize breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Ao G, Zhao S, Li G (1982) In vitro induction of haploid plantlets from unpollinated ovaries of corn (Zea mays L.). Acta Genetica Sinica 9(4):281–283

    Google Scholar 

  • Barloy D (1989) Comparison of the aptitude for anther culture in some androgenetic doubled haploid maize lines. Maydica 34:303–308

    Google Scholar 

  • Barclay I (1975) High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature 256(5516):410–411

    Article  Google Scholar 

  • Beaumont V, Widholm J (1993) Ploidy variation of pronamide-treated maize calli during long term culture. Plant Cell Reports 12(11):648–651

    Article  CAS  PubMed  Google Scholar 

  • Belicuas P, Guimares C, Paiva L, Duarte J, Maluf W, Paiva E (2007) Androgenetic haploids and SSR markers as tools for the development of tropical maize hybrids. Euphytica 156(1-2):95–102

    Article  CAS  Google Scholar 

  • Bennett M, Smith J, Ward J, Jenkins G (1981) The relationship between nuclear DNA content and centromere volume in higher plants. Journal of Cell Ence 47(2):91–115

    CAS  Google Scholar 

  • Birchler J, Auger D, Riddle N (2003) In search of the molecular basis of heterosis. Plant Cell 15:2236–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohanec B (2003) Ploidy determination using flow cytometry. In: Double haploid production in crop plants: a manual, Maluzynski M, Kasha KJ, Forster BP and Szarejko I. Kluwer Academic Publishers, Dordrecht pp 397-403

  • Britt A and Kuppu S (2016) Cenh3: an emerging player in haploid induction technology. Front Plant Sci 2016; 7: 357

  • Bylich V, Chalyk S (1996) Existence of pollen grains with a pair of morphologically divergent sperm nuclei as a possible cause of the haploid-inducing capacity in ZMS line. Maize Genet Coop News Lett 70:33

    Google Scholar 

  • Cai Q, Cao J, Shi G, Guo X, Zhang J, Zhao W, Li S, Yin Y (2012) Comparison on natural doubling of maize haploid in Heilongjiang and Hainan province. Journal of Maize Sciences 5:000007–000009

    Google Scholar 

  • Chaikam V (2012) In vivo maternal haploid induction in maize. In: Prasanna B, Chaikam V, Mahuku G (eds) Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico, DF, pp 14–19

    Google Scholar 

  • Chaikam V, Mahuku G (2012) Doubled haploid technology in maize breeding: theory and practice. CIMMYT, Mexico DF, pp 1–8

    Google Scholar 

  • Chaikam V, Molenaar W, Melchinger AE, Boddupalli PM (2019) Doubled haploid technology for line development in maize: technical advances and prospects. Theoretical and Applied Genetics 132:3227–3243

    Article  CAS  PubMed  Google Scholar 

  • Chalyk S (1994) Properties of maternal haploid maize plants and potential application to maize breeding. Euphytica 79(1):13–18

    Article  Google Scholar 

  • Chalyk S (1999) Creating new haploid-inducing lines of maize. Maize Genetics Cooperation Newsletter 73:53–53

    Google Scholar 

  • Chalyk S, Baumann A, Daniel G, Eder J (2003) Aneuploidy as a possible cause of haploid-induction in maize. Maize Genetics Coop News Letter 77:29–30

    Google Scholar 

  • Chase S (1949) Spontaneous doubling of the chromosome complement in monoploid sporophytes of maize. Proceedings of the Iowa Academy of Science 1:113–115

    Google Scholar 

  • Chase S (1952) Production of homozygous diploids of maize from monoploids. Agron J 44:263–267

    Article  Google Scholar 

  • Chase S (1963) Androgenesis-its use for transfer of maize cytoplasm. Journal of Heredity 4:4

    Google Scholar 

  • Chase S (1964) Monoploids and diploids of maize: a comparison of genotypic equivalents. American Journal of Botany 51(9):928–933

    Article  Google Scholar 

  • Chase S (1969) Monoploids and monoploid-derivatives of maize (Zea mays L.) 35 (2):117-168

  • Chen B, Liu L, Xu L, Meng Y, Gui G, Xu X, Jin W, Chen S (2016) Observation on doubling effects of immature haploid embryo in maize. Journal of China Agricultural University 21(005):10–16

    Google Scholar 

  • Chen S (2012) The breeding technology of haploid maize, second edn. China Agricultural Press

  • Chen S, Song T (2003) Identification haploid with high oil xenia effect in maize. Acta Agronomica Sinica 29(4):587–590

    Google Scholar 

  • Coe E (1959) A line of maize with high haploid frequency. American Naturalist 93(873):381–382

    Article  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLoS Biol. 7:e1000124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong L, Li L, Liu C, Liu C, Geng S, Li X, Huang C, Mao L, Chen S, Xie C (2018) Genome editing and double fluorescence proteins enable robust maternal haploid induction and identification in maize. Molecular Plant 11(9):1214–1217

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Xu X, Li L, Liu C, Tian X, Li W, Chen S (2014) Marker-assisted selection and evaluation of high oil in vivo haploid inducers in maize. Molecular Breeding 34(3):1147–1158

    Article  CAS  Google Scholar 

  • Dong X, Xu X, Miao J, Li L, Zhang D, Mi X, Liu C, Tian X, Melchinger A, Chen S (2013) Fine mapping of qhir1 influencing in vivo haploid induction in maize. Theoretical & Applied Genetics 126(7):1713–1720

    Article  CAS  Google Scholar 

  • Du H, Dai J, Li J (2010) Study proceeding in haploid breeding of maize. Journal of Maize Sciences 18(6):1–7

    Google Scholar 

  • Enaleeva N, Otkalo O, Tyrnov V (1995) Cytological expression of ig mutation in megagametophyte. Maize Genetics Cooperation Newsletter 69:121–121

    Google Scholar 

  • Evans M (2007) The indeterminate gametophyte1 gene of maize encodes a LOB domain protein required for embryo sac and leaf development. Plant Cell 19:46–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer E(2004) Molekulargenetische Untersuchungen zum Vorkommen paternaler DNA-Übertragung bei der in-vivo-Haploideninduktion bei Mais (Zea mays L.), Dissertation. University of Hohenheim, Grauer Verlag, Stuttgart

  • Forster B, Heberle-Bors E, Kasha K, Touraev A (2007) The resurgence of haploids in higher plants. Trends in Plant Science 12:368–375

    Article  CAS  PubMed  Google Scholar 

  • Gayen P, Sarkar K (1996) Cytomixis in maize haploids. Indian J. Genet. Plant Breeding 56:79–85

    Google Scholar 

  • Geiger, H (2009) Doubled haploids. In Handbook of Maize Genetics and Genomics pp. 641–657.

  • Geiger H, Gordillo G (2009) Doubled haploids in hybrid maize breeding. Maydica 54:485–499

    Google Scholar 

  • Gilles L, Khaled A, Laffaire J, Chaignon S, Gendrot G, Bergès H, Beydon G, Bayle V, Barret P, Comadran J, Martinant J, Rogowsky P, Widiez T (2017) Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize. The EMBO Journal 36(6):707–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodsell F (1961). Male sterility in corn by androgenesis. Crop Sci1 228-228

  • Guo L, Gu G, Yang T, He S, Zhang Z (1997) Studies on alloplasmic pure line derived from chemically-induced parthenogenic maize distant hybrid and its breeding. Genetics 24(6):537–543

    Google Scholar 

  • Jiao Y, Li J, Li W, Chen M, Chen S (2020) QTL mapping and prediction of haploid male fertility traits in maize (Zea mays L.) Plants 9:836

  • Kasha K, Kao K (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876

    Article  CAS  PubMed  Google Scholar 

  • Kato A (1997) Nitrous oxide (N2O) is effective in chromosome doubling of maize seedlings. Maize Genetic Coop Newsletter 71:36–37

    Google Scholar 

  • Kato A (2002) Chromosome doubling of haploid maize seedlings using nitrous oxide gas at the flower primordial stage. Plant Breed 121:370–377

    Article  Google Scholar 

  • Kelliher T, Starr D, Wang W, McCuiston J, Zhong H, Nuccio M, Martin B (2016) Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize. Front Plant Sci 3 31; 7:414

  • Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio M, Green J, Chen Z, Mccuiston J, Wang W (2017) MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction. Nature 542(7639):105–109

    Article  CAS  PubMed  Google Scholar 

  • Kelliher T, Starr D, Su X, Tang G, Chen Z, Carter J, Wittich P, Dong S, Green J, Burch E, McCuiston J, Gu W, Sun Y, Strebe T, Roberts J, Bate N, Que Q (2019) One-step genome editing of elite crop germplasm during haploid induction. Nature Biotechnology 37:287–292

    Article  CAS  PubMed  Google Scholar 

  • Kermicle J (1969) Androgenesis conditioned by a mutation in maize. Science 166(3911):1422–1424

    Article  CAS  PubMed  Google Scholar 

  • Khanday I, Skinner D, Yang B, Mercier R, Sundaresan V (2019) A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature 565:91–95

    Article  CAS  PubMed  Google Scholar 

  • Kitamura S, Akutsu M, Okazaki K (2009) Mechanism of action of nitrous oxide gas applied as a polyploidizing agent during meiosis in lilies. Sex Plant Reproduction 22:9–14

    Article  CAS  Google Scholar 

  • Kleiber D, Prigge V, Melchinger A et al (2012) Haploid fertility in temperate and tropical maize germplasm. Crop Sci 52:623–630

    Article  Google Scholar 

  • Kuppu S, Ron M, Marimuthu M, Li G, Huddleson A, Siddeek M, Terry J, Buchner R, Shabek N, Comai L, Britt A (2020) A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing. Plant Biotechnology Journal 18:2068–2080

    Article  CAS  PubMed Central  Google Scholar 

  • Lashermes P, Beckert M (1988) Genetic control of maternal haploidy in maize (Zea mays L.) and selection of haploid inducing lines. Theor Appl Genet 76:405–410

    Article  CAS  PubMed  Google Scholar 

  • Laurie D, Bennett M (1988) The production of haploid wheat plants from wheat x maize crosses. Theor Appl Genet 76(3):393–397

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xu X, Jin W, Chen S (2009) Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize. Planta 230(2):367–376

    Article  CAS  PubMed  Google Scholar 

  • Li X, Meng D, Chen S, Luo H, Zhang Q, Jin W, Yan J (2017) Single nucleus sequencing reveals spermatid chromosome fragmentation as a possible cause of maize haploid induction. Nature Communications 8(1):991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin B (1981) Megagametogenetic alterations associated with the indeterminate gametophyte (ig) mutant in maize. Rev Bras Biol 43:557–563

    Google Scholar 

  • Liu C, Li W, Zhong Y, Dong X, Hu H, Tian X, Wang L, Chen B, Chen C, Melchinger A, Chen S (2015) Fine mapping of qhir8 affecting in vivo haploid induction in maize. Theoretical Applied Genetics 128(12):2507–2515

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li X, Meng D, Zhong Y, Chen C, Dong X, Xu X, Chen B, Li W, Li L, Tian X, Zhao H, Song W, Luo H, Zhang Q, Lai J, Jin W, Yan J, Chen S (2017) A 4 bp insertion at ZmPLA1 encoding a putative phospholipase A generates haploid induction in maize. Molecular Plant 10(3):520–522

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Zhong Y, Qi X, Chen M, Liu Z, Chen C, Tian X, Li J, Jiao Y, Wang D, Wang Y, Li M, Xin M, Liu W, Jin W, Chen S (2020) Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat. Plant Biotechnology Journal 18:316–318

    Article  PubMed  Google Scholar 

  • Ma H, Li G, Würschum T, Zhang Y, Zheng D, Yang X, Li J, Liu W, Yan J, Chen S (2018) Genome-wide association study of haploid male fertility in maize (Zea mays L.). Frontiers in. Plant Science 9:974

    Google Scholar 

  • Melchinger A, Molenaar W, Mirdita V, Schipprack W (2016) Colchicine alternatives for chromosome doubling in maize haploids for doubled haploid production. Crop Sci 56:1–11

    Article  CAS  Google Scholar 

  • Mieulet D, Jolivet S, Rivard M, Cromer L, Vernet A, Mayonove P, Pereira L, Droc G, Courtois B, Guiderdoni E, Mercier R (2016) Turning rice meiosis into mitosis. Cell Research 26:1242–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molenaar W, Schipprack W, Melchinger A (2018) Nitrous oxide-induced chromosome doubling of maize haploids. Crop Science 58:650–659

    Article  CAS  Google Scholar 

  • Molenaar W, Melchinger A (2019) Production of doubled haploidlines for hybrid breeding in maize. In: Frank O, Wolfgang F (eds) Advances in breeding techniques for cereal crops. Burlegh Dodds Science Publishing Company, Cambridge

    Google Scholar 

  • Murovec J, Bohanec B (2012) Haploids and doubled haploids in plant breeding. Plant breeding, In, pp 87–106

    Google Scholar 

  • Petolino J Dattee Y, Dumas C (1992) The use of androgenesis in maize breeding. Repord. Biol. Plant Breed131-138

  • Qiu F, Liang Y, Li Y, Liu Y, Wang L, Zheng Y (2014). Morphological, cellular and molecular evidences of chromosome random elimination in vivo upon haploid induction in maize. Current Plant Biology1, 83–90.

  • Ravi M, Chan S (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464(7288):615–618

    Article  CAS  PubMed  Google Scholar 

  • Ravi M, Marimuthu M, Tan E, Maheshwari S, Henry I, Marin-Rodriguez B, Urtecho G, Tan J, Thornhill K, Zhu F (2014) A haploid genetics toolbox for Arabidopsis thaliana. Nature Communications 5:5334

    Article  CAS  PubMed  Google Scholar 

  • Ravi M, Shibata F, Ramahi J, Nagaki K, Chen C, Murata M, Chan S (2011) Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana. PLoS genetics 7:e1002121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Röber F, Gordillo G, Geiger H (2005) In vivo haploid induction in maize - performance of new inducers and significance of doubled haploid lines in hybrid breeding. Maydica 50(3):275–283

    Google Scholar 

  • Ren J, Wu P, Tian X, Lübberstedt T, Chen S (2017) QTL mapping for haploid male fertility by a segregation distortion method and fine mapping of a key QTL qhmf4 in maize. Theoretical Applied Genetics 130(7):1–11

    Article  CAS  Google Scholar 

  • Riera-Lizarazu O, Rines H, Phillips R (1996) Cytological and molecular characterization of oat x maize partial hybrids. Theoretical and Applied Genetics 93(1-2):123–135

    Article  CAS  PubMed  Google Scholar 

  • Rotarenco V, Eder J (2003) Possible effects of heterofertilization on the induction of maternal haploids in maize. Maize genetics cooperation newsletter 77:30–30

    Google Scholar 

  • Sarkar K, Coe E (1966) A genetic analysis of the origin of maternal haploids in maize. Genetics 54(2):453–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar K, Pandey A, Gayen P (1994) Stabilization of high haploid inducer lines. Maize Genetics Cooperation Newsletter 68:64–64

    Google Scholar 

  • Schnable P, Springer N (2013) Progress toward understanding heterosis in crop plants. Annu. Rev. Plant Biol 64:71–88

    Article  CAS  Google Scholar 

  • Sprague G (1929) Hetero-fertilization in maize. Science 69(1794):526–527

    Article  CAS  PubMed  Google Scholar 

  • Sprague G (1932) The nature and extent of hetero-fertilization in maize. Genetics 17(3):358–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spillane C, Curtis M, Grossniklaus U (2004) Apomixis technology development-virgin births in farmers’ fields? Nature Biotechnology 22:687–691

    Article  CAS  PubMed  Google Scholar 

  • Tian X, Qin Y, Chen B, Liu C, Wang L, Li X, Dong X, Liu L, Chen S (2018) Hetero-fertilization together with failed egg–sperm cell fusion supports single fertilization involved in in vivo haploid induction in maize. Journal of Experimental Botany 69(20):4689–4701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan Y, Duncan D, Rayburn A, Petolino J, Widholm J (1991) The use of antimicrotubule herbicides for the production of doubled haploid plants from anther-derived maize callus. Tagtheoretical & Applied Geneticstheoretische Und Angewandte Genetik 81(2):205–211

    Article  CAS  Google Scholar 

  • Wang N, Dawe R (2018) Centromere size and its relationship to haploid formation in plants. Molecular Plant 11(3):398–406

    Article  CAS  PubMed  Google Scholar 

  • Wang M, van Bergen S, van Duijn B (2000) Insights into a key developmental switch and its importance for efficient plant breeding. Plant Physiol 124:523–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Zhu L, Zhao B, Zhao Y, Xie Y, Zheng Z, Li Y, Sun J, Wang H (2019a) Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Molecular Breeding 12(4):597–602

    Google Scholar 

  • Wang C, Liu Q, Shen Y, Hua Y, Wang J, Lin J, Wu M, Sun T, Cheng Z, Mercier R, Wang K (2019b) Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nature Biotechnology 37:283–286

    Article  CAS  PubMed  Google Scholar 

  • Wedzony M, Röber F, Geiger H (2002) Chromosome elimination observed in selfed progenies of maize inducer line RWS. In: XVIIth International Congress on Sex Plant Reproduction. Maria Curie-Sklodowska University Press, p 17

  • Wijnker E, Deurhof L, Jose V, De S, Blankestijn H, Becker F, Ravi M, Chan S, Van D, Lelivelt C (2014) Hybrid recreation by reverse breeding in Arabidopsis thaliana. Nature Protocols 9(4):761–772

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Li H, Ren J, Chen S (2014) Mapping of maternal QTLs for in vivo haploid induction rate in maize (Zea mays L.). Euphytica 196(3):413–421

    Article  Google Scholar 

  • Wu P, Ren J, Tian X, Lübberstedt T, Li W, Li G, Li X, Chen S (2016) New insights into the genetics of haploid male fertility in maize. Crop Ence 57(2):637–647

    Google Scholar 

  • Yao L, Zhang Y, Liu C, Liu Y, Wang Y, Liang D, Liu J, Sahoo G, Kelliher T (2018) OsMATL mutation induces haploid seed formation in indica rice. Nature Plants 4:530–533

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Dawe R (2012) Total centromere size and genome size are strongly correlated in ten grass species. Chromosome Research 20(4):403–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Xu X, Xie H, Chen S, Jin W (2013) Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers. Plant Physiology 163(2):721–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Gu M (1984) Production of diploid pure lines of maize through parthenogenesis induced by chemicals. Acta Genetica Sinica 11(1):39–46

    Google Scholar 

  • Zhong Y, Liu C, Qi X, Jiao Y, Chen S (2019) Mutation of ZmDMP enhances haploid induction in maize. Nature Plants 5(6):575–580

    Article  PubMed  Google Scholar 

  • Zhong Y, Chen B, Li M, Wang D, Jiao Y, Qi X, Wang M, Liu Z, Chen C, Wang Y, Chen M, Li J, Xiao Z, Cheng D, Liu W, Boutilie K, Liu C, Chen S (2020) A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nature Plants volume 6, 466–472

Download references

Acknowledgements

We are grateful to Dr. Haishan Luo and Dr. Zhaobin Dong from China Agriculture University for the critical reading and editorial assistance on our manuscript.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Funding

This work was supported by the National Natural Science Foundation of China (31801368, 31801375)

Author information

Authors and Affiliations

Authors

Contributions

D.M. and W.J. contributed to design the review and edited the manuscript. All authors wrote and approved the final manuscript.

Corresponding author

Correspondence to Weiwei Jin.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Maize Genetics, Genomics and Sustainable Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, D., Liu, C., Chen, S. et al. Haploid induction and its application in maize breeding. Mol Breeding 41, 20 (2021). https://doi.org/10.1007/s11032-021-01204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-021-01204-5

Keywords

Navigation