Skip to main content

Advertisement

Log in

Toward Analog Neural Computation

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

Computationalism about the brain is the view that the brain literally performs computations. For the view to be interesting, we need an account of computation. The most well-developed account of computation is Turing Machine computation, the account provided by theoretical computer science which provides the basis for contemporary digital computers. Some have thought that, given the seemingly-close analogy between the all-or-nothing nature of neural spikes in brains and the binary nature of digital logic, neural computation could be a species of digital computation. A few recent authors have offered arguments against this idea; here, I review recent findings in neuroscience that further cement the implausibility of this view. However, I argue that we can retain the view that the brain is a computer if we expand what we mean by “computation” to include analog computation. I articulate an account of analog computation as the manipulation of analog representations based on previous work on the difference between analog and non-analog representations, extending a view originally articulated in Shagrir (Stud Hist Philos Sci 41(3):271–279, 2010). Given that analog computation constitutes a significant chapter in the history of computation, this revision of computationalism to include analog computation is not an ad hoc addition. Brains may well be computers, but of the analog kind, rather than the digital kind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. That is, insofar as a Turing Machine can be said to have an architecture, given that it is an abstract mathematical object.

  2. More precisely, computationalism can be a view about the brain or about the mind. In this essay, I focus only on computationalism about the brain.

  3. In fact, this is how older light dimmers actually work: they send a rapid series of pulses to the light bulb, with a shorter gap between pulses for brighter light, and a longer gap for dimmer light.

  4. Of course, virtually all modern digital computers use binary digits, so the string would actually be “101011001”.

References

  • Alle, H., & Geiger, J. R. P. (2006). Combined analog and action potential coding in hippocampal mossy fibers. Science, 311, 1290–1293.

    Article  Google Scholar 

  • Bialowas, A., Rama, S., Zbili, M., Marra, V., Fronzaroli Molinieres, L., Ankri, N., et al. (2015). Analog modulation of spike-evoked transmission in CA3 circuits is determined by axonal Kv1.1 channels in a time-dependent manner. European Journal of Neuroscience, 41(3), 293–304.

    Article  Google Scholar 

  • Brody, C., Romo, R., & Kepecs, A. (2003). Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Current Opinion in Neurobiology, 13, 204–211.

    Article  Google Scholar 

  • Bromley, A. G. (1990). Analog computing devices. In W. Aspray (Ed.), Computing before computers. Ames, IA: Iowa State University Press.

    Google Scholar 

  • Chalmers, D. J. (1996). Does a rock implement every finite-state automaton? Synthese, 108(3), 309–333.

    Article  MathSciNet  MATH  Google Scholar 

  • Christie, J. M., Chiu, D. N., & Jahr, C. E. (2010). Ca\(^{2+}\)-dependent enhancement of release by subthreshold somatic depolarization. Nature Neuroscience, 14(1), 62–68.

    Article  Google Scholar 

  • Dayan, P., & Abbott, L. F. (2005). Theoretical neuroscience. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Debanne, D., Bialowas, A., & Rama, S. (2013). What are the mechanisms for analogue and digital signalling in the brain? Nature Reviews Neuroscience, 14(1), 63–69.

    Article  Google Scholar 

  • Egan, F. (1995). Computation and content. Philosophical Review, 104(2), 181–203.

    Article  Google Scholar 

  • Egan, F. (2010). Computational models: A modest role for content. Studies in History and Philosophy of Science Part A, 41(3), 253–259.

    Article  Google Scholar 

  • Fodor, J. A. (1975). The language of thought. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gallistel, C. R., & King, A. P. (2009). Memory and the computational brain. Malden, MA: Wiley-Blackwell.

    Book  Google Scholar 

  • Gerstner, W., Kempter, R., van Hemmen, J. L., & Wagner, H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature, 383(6595), 76–81.

    Article  Google Scholar 

  • Gerstner, W., Kistler, W. M., Naud, R., & Paninski, L. (2014). Neuronal dynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hormuzdi, S. G., Filippov, M. A., Mitropoulou, G., Monyer, H., & Bruzzone, R. (2004). Electrical synapses: A dynamic signaling system that shapes the activity of neuronal networks. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1662(1–2), 113–137.

    Article  Google Scholar 

  • Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A., & Hudspeth, A. J. (2012). Principles of neural science (5th ed.). New York, NY: McGraw-Hill Education.

    Google Scholar 

  • Kole, M. H. P., Letzkus, J. J., & Stuart, G. J. (2007). Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron, 55(4), 633–647.

    Article  Google Scholar 

  • Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.

    Article  MathSciNet  Google Scholar 

  • Maley, C. J. (2011). Analog and digital, continuous and discrete. Philosophical Studies, 155(1), 117–131.

    Article  Google Scholar 

  • Miłkowski, M. (2013). Explaining the computational mind. Cambridge, MA: MIT Press.

    Google Scholar 

  • Mindell, D. A. (2002). Between human and machine. Baltimore, MD: Johns Hopkins University Press.

    Google Scholar 

  • Piccinini, G. (2007). Computational modelling vs. computational explanation: Is everything a Turing machine, and does it matter to the philosophy of mind? Australasian Journal of Philosophy, 85(1), 93–115.

    Article  MathSciNet  Google Scholar 

  • Piccinini, G. (2008). Computation without representation. Philosophical Studies, 137(2), 205–241.

    Article  MathSciNet  Google Scholar 

  • Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 34, 453–488.

    Article  Google Scholar 

  • Putnam, H. (1988). Representation and reality. Cambridge, MA: MIT Press.

    Google Scholar 

  • Rama, S., Zbili, M., & Debanne, D. (2015). Modulation of spike-evoked synaptic transmission: The role of presynaptic calcium and potassium channels. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1853(9), 1933–1939.

    Article  Google Scholar 

  • Robertson, J. S. (1964). Analog computation: Definition and characteristics. Annals of the New York Academy of Sciences, 115(1), 553–557.

    Article  Google Scholar 

  • Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3(3), 417–424.

    Article  Google Scholar 

  • Shagrir, O. (2010). Brains as analog-model computers. Studies in History and Philosophy of Science, 41(3), 271–279.

    Article  Google Scholar 

  • Söhl, G., Maxeiner, S., & Willecke, K. (2005). Expression and functions of neuronal gap junctions. Nature Reviews Neuroscience, 6(3), 191–200.

    Article  Google Scholar 

  • Sullivan, D. W., & Levy, W. B. (2003). Quantal synaptic failures improve performance in a sequence learning model of hippocampal CA3. Neurocomputing, 52–54, 397–401.

    Article  Google Scholar 

  • Ulmann, B. (2013). Analog computing. Berlin: De Gruyter.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corey J. Maley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maley, C.J. Toward Analog Neural Computation. Minds & Machines 28, 77–91 (2018). https://doi.org/10.1007/s11023-017-9442-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-017-9442-5

Keywords

Navigation