Skip to main content
Log in

CircWHSC1 expedites cervical cancer progression via miR-532-3p/LTBP2 axis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Dysregulated circRNAs have potential roles in the progression of various cancer types, including cervical cancer (CaCx). The carcinogenic roles of circRNA Wolf–Hirschhorn syndrome candidate gene-1 (circWHSC1) are described in the development of diverse cancers. The objective of this study was to investigate the expression and the underlying role of circWHSC1 in CaCx. The expression of circWHSC1 was detected by real-time PCR. After the suppression of circWHSC1 expression, the changes in the proliferation, migration, invasion, and apoptosis capacities were detected by CCK-8 assay, colony formation assay, Transwell assays, flow cytometry, and the determination of apoptosis-related proteins. The interplay among circWHSC1, miR-532-3p, and latent transforming growth factor-β binding protein 2 (LTBP2) was confirmed by luciferase reporter and biotinylated RNA pull-down assays. A nude mice xenograft tumor model was established to evaluate the anti-tumorigenic role of circWHSC1 silencing in vivo. CircWHSC1 was overexpressed in CaCx tissues and cell lines and its high expression was inversely associated with the survival rate of patients with CaCx. CircWHSC1 silencing was capable of suppressing the proliferation, metastasis, and invasion of tumor cells and inducing apoptosis. Investigation to its molecular mechanism revealed that circWHSC1 functioned as a competitive endogenous RNA (ceRNA), mediating LTBP2 expression by targeting miR-532-3p. The in vivo experiments further confirmed the inhibition of tumor growth and metastasis by circWHSC1 knockdown. The circWHSC1-mediated miR-532-3p/LTBP2 signaling axis might be a novel therapeutic target for CaCx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Arbyn M, Weiderpass E, Bruni L, de Sanjose S, Saraiya M, Ferlay J, Bray F (2020) Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health 8:e191–e203. https://doi.org/10.1016/S2214-109X(19)30482-6

    Article  PubMed  Google Scholar 

  2. Cohen PA, Jhingran A, Oaknin A, Denny L (2019) Cervical cancer. Lancet 393:169–182. https://doi.org/10.1016/S0140-6736(18)32470-X

    Article  PubMed  Google Scholar 

  3. Phillips P, Phillips J (2017) Hysterectomy with radiotherapy or chemotherapy or both for women with locally advanced cervical cancer. Clin Nurse Spec 31:189–190. https://doi.org/10.1097/NUR.0000000000000304

  4. Barker HE, Paget JT, Khan AA, Harrington KJ (2015) The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer 15:409–425

    Article  CAS  Google Scholar 

  5. Li D, Yang Y, Li ZQ, Li LC, Zhu XH (2019) Circular RNAs: from biogenesis and function to diseases. Chin Med J (Engl) 132:2457–2464. https://doi.org/10.1097/CM9.0000000000000465

    Article  CAS  Google Scholar 

  6. Chaichian S, Shafabakhsh R, Mirhashemi SM, Moazzami B, Asemi Z (2020) Circular RNAs: a novel biomarker for cervical cancer. J Cell Physiol 235:718–724. https://doi.org/10.1002/jcp.29009

    Article  CAS  PubMed  Google Scholar 

  7. Lin L, Li N, Hu X, Sun J, He Y (2020) Identification of circ_0085616 as an upregulated and oncogenic circular RNA in cervical cancer via the miR-503-5p-mediated ATXN7L3 activation. Cancer Biother Radiopharm. https://doi.org/10.1089/cbr.2020.3865

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jiao J, Jiao X, Liu Q, Qu W, Ma D, Zhang Y, Cui B (2020) The Regulatory role of circRNA_101308 in cervical cancer and the prediction of its mechanism. Cancer Manag Res 12:4807–4815. https://doi.org/10.2147/CMAR.S242615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zong ZH, Du YP, Guan X, Chen S, Zhao Y (2019) CircWHSC1 promotes ovarian cancer progression by regulating MUC1 and hTERT through sponging miR-145 and miR-1182. J Exp Clin Cancer Res 38:437. https://doi.org/10.1186/s13046-019-1437-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu Y, Chen S, Zong ZH, Guan X, Zhao Y (2020) CircRNA WHSC1 targets the miR-646/NPM1 pathway to promote the development of endometrial cancer. J Cell Mol Med 24:6898–6907. https://doi.org/10.1111/jcmm.15346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ding L, Xie Z (2021) CircWHSC1 regulates malignancy and glycolysis by the miR-212-5p/AKT3 pathway in triple-negative breast cancer. Exp Mol Pathol 123:104704. https://doi.org/10.1016/j.yexmp.2021.104704

    Article  CAS  PubMed  Google Scholar 

  12. Liu J, Zhu H, Fu L, Xu T (2021) Investigating the underlying mechanisms of circular RNAs and their application in clinical research of cervical cancer. Front Genet 12:653051. https://doi.org/10.3389/fgene.2021.653051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wa Q, Zou C, Lin Z, Huang S, Peng X, Yang C, Ren D, Xu D, Guo Y, Liao Z, Wang B, Hu H, Huang S, He P (2020) Ectopic expression of miR-532-3p suppresses bone metastasis of prostate cancer cells via inactivating NF-kappaB signaling. Mol Ther Oncolytics 17:267–277. https://doi.org/10.1016/j.omto.2020.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao B, Wang L, Zhang Y, Zhang N, Han M, Liu H, Sun D, Liu Y (2021) MiR-532-3p suppresses cell viability, migration and invasion of clear cell renal cell carcinoma through targeting TROAP. Cell Cycle 20:1578–1588. https://doi.org/10.1080/15384101.2021.1953767

    Article  CAS  PubMed  Google Scholar 

  15. Chen H, Liu Y, Liu P, Dai Q, Wang P (2021) LINC01094 promotes the invasion of ovarian cancer cells and regulates the Wnt/beta-catenin signaling pathway by targeting miR-532-3p. Exp Ther Med 22:1228. https://doi.org/10.3892/etm.2021.10662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moren A, Olofsson A, Stenman G, Sahlin P, Kanzaki T, Claesson-Welsh L, ten Dijke P, Miyazono K, Heldin CH (1994) Identification and characterization of LTBP-2, a novel latent transforming growth factor-beta-binding protein. J Biol Chem 269:32469–32478

    Article  CAS  Google Scholar 

  17. Ren Y, Lu H, Zhao D, Ou Y, Yu K, Gu J, Wang L, Jiang S, Chen M, Wang J, Zhang R, Xu C (2015) LTPB2 acts as a prognostic factor and promotes progression of cervical adenocarcinoma. Am J Transl Res 7:1095–1105

    PubMed  PubMed Central  Google Scholar 

  18. Dong P, Xu D, Xiong Y, Yue J, Ihira K, Konno Y, Watari H (2020) The expression, functions and mechanisms of circular RNAs in gynecological cancers. Cancers (Basel). https://doi.org/10.3390/cancers12061472

    Article  PubMed Central  Google Scholar 

  19. Lyu P, Zhai Z, Hao Z, Zhang H, He J (2021) CircWHSC1 serves as an oncogene to promote hepatocellular carcinoma progression. Eur J Clin Invest 51:e13487

    Article  CAS  Google Scholar 

  20. Shi F, Yang Q, Shen D, Chen J (2021) CircRNA WHSC1 promotes non-small cell lung cancer progression via sponging microRNA-296-3p and up-regulating expression of AKT serine/threonine kinase 3. J Clin Lab Anal 35:e23865. https://doi.org/10.1002/jcla.23865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20:675–691. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  22. Ji F, Du R, Chen T, Zhang M, Zhu Y, Luo X, Ding Y (2020) Circular RNA circSLC26A4 accelerates cervical cancer progression via miR-1287-5p/HOXA7 axis. Mol Ther Nucleic Acids 19:413–420. https://doi.org/10.1016/j.omtn.2019.11.032

    Article  CAS  PubMed  Google Scholar 

  23. Chen R, Mao L, Shi R, Wang W, Cheng J (2020) circRNA MYLK accelerates cervical cancer via up-regulation of RHEB and activation of mTOR signaling. Cancer Manag Res 12:3611–3621. https://doi.org/10.2147/CMAR.S238172

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li J, Guo R, Liu Q, Sun J, Wang H (2020) Circular RNA Circ-ITCH inhibits the malignant behaviors of cervical cancer by microRNA-93-5p/FOXK2 axis. Reprod Sci 27:860–868. https://doi.org/10.1007/s43032-020-00140-7

    Article  CAS  PubMed  Google Scholar 

  25. Liu M, Luo C, Dong J, Guo J, Luo Q, Ye C, Guo Z (2020) CircRNA_103809 suppresses the proliferation and metastasis of breast cancer cells by sponging MicroRNA-532-3p (miR-532-3p). Front Genet 11:485. https://doi.org/10.3389/fgene.2020.00485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang K, Fan WS, Fu XY, Li YL, Meng YG (2020) Long noncoding RNA DARS-AS1 acts as an oncogene by targeting miR-532-3p in ovarian cancer. Eur Rev Med Pharmacol Sci 24:7211. https://doi.org/10.26355/eurrev_202007_21862

    Article  CAS  PubMed  Google Scholar 

  27. Robertson IB, Horiguchi M, Zilberberg L, Dabovic B, Hadjiolova K, Rifkin DB (2015) Latent TGF-beta-binding proteins. Matrix Biol 47:44–53. https://doi.org/10.1016/j.matbio.2015.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Suri F, Yazdani S, Elahi E (2018) LTBP2 knockdown and oxidative stress affect glaucoma features including TGFbeta pathways, ECM genes expression and apoptosis in trabecular meshwork cells. Gene 673:70–81. https://doi.org/10.1016/j.gene.2018.06.038

    Article  CAS  PubMed  Google Scholar 

  29. Wan F, Peng L, Zhu C, Zhang X, Chen F, Liu T (2017) Knockdown of latent transforming growth factor-beta (TGF-beta)-binding protein 2 (LTBP2) inhibits invasion and tumorigenesis in thyroid carcinoma cells. Oncol Res 25:503–510. https://doi.org/10.3727/096504016X14755368915591

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang J, Liang WJ, Min GT, Wang HP, Chen W, Yao N (2018) LTBP2 promotes the migration and invasion of gastric cancer cells and predicts poor outcome of patients with gastric cancer. Int J Oncol 52:1886–1898. https://doi.org/10.3892/ijo.2018.4356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

YL, FDM, and CGS conceived and designed the experiments, YW analyzed and interpreted the results of the experiments, and DC performed the experiments; all authors have read and approved the manuscript.

Corresponding author

Correspondence to Dali Cheng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

The experiments were approved by the Ethics Committee of Shengjing Hospital of China Medical University.

Consent for publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Meng, F., Sui, C. et al. CircWHSC1 expedites cervical cancer progression via miR-532-3p/LTBP2 axis. Mol Cell Biochem 477, 1669–1679 (2022). https://doi.org/10.1007/s11010-022-04395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04395-3

Keywords

Navigation